Skip to main content Skip to search
Displaying 1 - 16 of 16
A new fluorescent labeling reagent, benzimidazo[2,1-<i>b</i>]quinazolin-12(6<i>H</i>)-one-5-ethyl-<i>p</i>-toluenesulfonate (BQETS) was designed and synthesized, and it was successfully applied to the determination of fatty acids with liquid chromatography. BQETS can easily and quickly label fatty acids within 20 min at 90 °C in dimethylformamide with K<sub>2</sub>CO<sub>3</sub> as catalyst. The derivatives exhibit high stability and strong fluorescence with excitation and emission wavelengths of 247 and 401 nm, respectively. The 24 derivatives of fatty acids were completely separated by gradient elution on a Hypersil GOLD C18 column. Excellent linear responses for all fatty acids were observed with correlation coefficients of >0.9991. The method also showed good sensitivity and precision, with limits of detection in the 0.0024-0.0206 μg g<sup>−1</sup> range and relative standard deviations ≤9.6 %. This is the first time that BQETS fluorescent probe and its applications for the determination of fatty acids have been reported. Moreover, this is the first report on the comparison of free fatty acids composition in the above-ground part of <i>Coriandrum sativum</i> L. from different habitats in China.

Abstract This presented study describes a method based on high performance liquid chromatography combined with fluorescence detection (HPLC-FLD) using N-(2-iodoacetyl)-1-pyrenemethylamine (NIPA) as a novel fluorescence labeling reagent for the determination of thyreostats in bovine milk. Five thyreostats, belonging to the group of imidazole and thiouracil, were investigated in this work: tapazole (TAP), thiouracil (TU), methylthiouracil (MTU), propylthiouracil (PTU) and phenylthiouracial (PhTU). Thyreostats were specifically purified by a silver ion solid phase extraction (Ag-SPE) cartridge and then labeled using NIPA. The labeled derivatives showed excellent fluorescence property with maximum excitation and emission wavelengths of 330 nm and 375 nm, respectively. The labeled derivatives were separated on a reversed-phase Eclipse SB-C18 column within 12 min. Excellent linearity (R2 > 0.995) of all thyreostats was achieved with the limits of detection (LODs) and the limits of quantitation (LOQs) in the low micrograms per liter range of 0.21–0.30 μg/L and 0.70–1.00 μg/L, respectively. Satisfactory recoveries in the range of 93.5–98.0% were obtained for all thyreostats. The developed method has been successfully applied to analyze thyreostats in bovine milk with good applicability. Thirty bovine milk samples have been investigated, and varying levels of thiouracil were detected in thirteen of these samples. The highest level in the raw milk reached a value of 4.5 μg/L. To our best knowledge, this study is the first to report the presence of naturally occurring thiouracil in milk by HPLC-FLD analysis. Highlights • A pre-column derivatization HPLC-FLD method was developed for the determination of thyreostats in milk samples. • LOD was in the low micrograms per liter range of 0.21–0.30 μg·L−1. • The proposed method was successfully applied to the determination of thyreostats in milk sample. • This study is the first to report the presence of naturally occurring thiouracil in milk by HPLC-FLD analysis.

A pair of stable isotope labeling (SIL) reagents, <b>N</b>-(4-(carbazole-9-yl)-phenyl)-<b>N</b>-maleimide (NCPM-d0) and its heavy analogue NCPM-d2, were used for labeling thiol-containing drugs. On basis of SIL, a global isotope internal standard quantitative method for the detection of five thiol-containing drugs by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was developed. The NCPM-d0 and NCPM-d2 can easily label thiol-containing drugs under mild conditions within 10 min at 40 °C. The NCPM-d0 and NCPM-d2 labeled thiol-containing drugs can generate two characteristic product ions (<b>m</b>/<b>z</b> at 372.5 and 374.5) under collision induced dissociation, respectively, which is used to establish the multiple reaction monitoring (MRM) based detection. The NCPM labeling combined with MRM analysis not only allowed trace detection of thiol-containing drugs due to the extremely high sensitivity, but also efficiently corrected the matrix effects during HPLC-MS/MS and the instrument fluctuation in the MS/MS signal intensity. The detection sensitivities of thiol-containing drugs improved by 14.5-650.5-fold due to NCPM-labeling, while the matrix and ion suppression effects were markedly minimized by the SIL strategy. The limits of detection (LODs) and the limits of quantitation (LOQs) were in the range 10.0-15.0 ng·mL−1 and 31.0-50.0 ng·mL−1, respectively. The proposed method was used for the simultaneous determination of five thiol-containing drugs in plasma samples with satisfactory recoveries in the range of 95.0-97.5%.<br>• A stable isotope labeling strategy for analyzing thiol-containing drugs has been developed. • A pair of SIL reagents NCPM-d0 and NCPM-d2 were used to label thiol-containing drugs. • The detection sensitivities of thiol-containing drugs improved by 14.5-650.5-fold. • The proposed method was successfully applied to pharmacokinetic study of captopril.

A simple, sensitive, and selective high-performance liquid chromatography (HPLC) method using 9-(2-iodoethyl)acridone (IEA) as a novel fluorescence derivatizing agent for the simultaneous determination of six thiophenols has been developed. An efficient Pb<sup>2+</sup>-modified OASIS-MCX cartridge was used and could get good recoveries. IEA was successfully used to label thiophenols with high sensitivity and excellent selectivity. The effects of different solvents, pH, and surfactants on fluorescence properties of derivatives were investigated. To obtain the best labeling efficiency, derivatizing parameters including pH value, temperature, and concentration of IEA, as well as types of catalysts were also evaluated in detail. Under the optimal conditions, the separation could be achieved within 12 min with limits of detection (LODs) in the range of 0.6-5.8 μg L<sup>−1</sup> and relative standard deviations (RSDs) < 3.9 %. This is the first time that IEA was applied to the analysis of thiophenols, and the established method has been successfully applied to the trace level detection of thiophenols in industrial wastewater samples.

A novel hyphenated technique based on ultrasonic-assisted dispersive liquid-liquid microextraction (UA-DLLME) coupled with derivatization has been established for the determination of brassinolide (BL, a representative of brassinosteroids) by HPLC fluorescence detection. 9-Phenanthreneboronic acid is used as labeling reagent of BL. UA-DLLME parameters containing type and volume of extraction and disperser solvent, pH and ultrasonication time are optimized. Derivatization parameters are optimized included amount of 9-phenanthreneboronic acid, volume ratio of pyridine, derivatization time and temperature. Under optimal conditions, quantitative linear range of BL is 50-1,000 ng L<sup>−1</sup> and excellent linear response is observed with correlation coefficient of 0.9996. Limit of detection and limit of quantification are calculated as 8.0 and 25.0 ng L<sup>−1</sup>, respectively. RSDs of retention time and peak area are in the range of 0.68-0.97 % and 4.61-6.54 % for intra-day precision, 1.32-1.94 % and 7.28-9.75 % for inter-day precision, respectively. Accuracy is satisfactory in the range of 82.3-125.1 %. RSDs’ values of repeatability are in the range of 0.82-1.79 and 3.95-8.53 % for retention time and peak area, respectively. Enrichment factor for BL is 189. The results of recovery and matrix effect are in the range of 82.0-108.6 and 90.0-115.3 %, respectively. The proposed method has been applied for the determination of BL in <i>Arabidopsis thaliana</i>, <i>Daucus carota</i> and <i>Brassica campestris</i> L. leaves with much higher sensitivity than many other methods.

In this study, a simple analytical method for the determination of γ-aminobutyric acid, gabapentin, and baclofen by using high-performance liquid chromatography with fluorescence detection was developed. An amidogen-reactive fluorescence labeling reagent, 4-(carbazole-9-yl)-benzyl chloroformate was first used to sensitively label these analytes. The completed labeling of these analytes can be finished rapidly only within 5 min at the room temperature (25°C) to form 4-(carbazole-9-yl)-benzyl chloroformate labeled fluorescence derivatives. These labeled derivatives expressed strong fluorescence property with the maximum excitation and emission wavelengths of 280 and 380 nm, respectively. The labeled derivatives were analyzed using a reversed-phase Eclipse SB-C18 column within 10 min with satisfactory shapes. Excellent linearity (R² > 0.995) for all analytes was achieved with the limits of detection and the limits of quantitation in the range of 0.25−0.35 and 0.70−1.10 μg/L, respectively. The proposed method was used for the simultaneous determination of γ-aminobutyric acid and its analogs in human serum with satisfactory recoveries in the range of 94.5-97.5%.

A new fluorescent labeling reagent has been developed for the determination of fatty acids (FAs) by HPLC with fluorescence detection. The derivatization conditions including the amount of derivatization reagent, temperature, and type of catalyst were investigated, the results indicated that the reaction proceeded within 30 min at 90°C in the presence of K₂CO₃ catalyst. The maximal yield was obtained with a four- to fivefold molar reagent excess. The derivatives exhibited strong fluorescence with an excitation maximum at <i>λ</i><sub>ex</sub> = 245 nm and an emission maximum at <i>λ</i><sub>em</sub> = 410 nm. Twenty-five FA derivatives were well separated by RP-HPLC on a Hypersil BDS C₈ column in combination with gradient elution. All FAs were found to give excellent linear responses with correlation coefficients >0.9992. The method gave a low LOQ of 0.85-5.5 ng/mL (S/N of 10). The developed method was employed to analyze free FAs (FFAs) composition in pomegranate samples without any purification. FFAs in samples were doubly identified by HPLC retention time and protonated molecular ion corresponding to <i>m</i>/<i>z</i> [M+H]⁺. This newly developed method allows a highly sensitive determination of trace FFAs from pomegranate and other foodstuffs.

The goal of the presented work is to develop a simple and sensitive high-performance liquid chromatography in combination with fluorescence detection (HPLC-FLD) method for the determination of four nitrofurans (NFs) metabolites compounds (semicarbazide (SEM), 1-aminohydantoin (AH), 3-amino-2-oxazolidinone (AOZ) and 3-amino-morpholinomethyl-2-oxazolidinone (AMOZ)) in foodstuffs. For this goal, we synthesized a novel fluorescence labeling reagent, 4-(carbazole-9-yl)-benzyl chloroformate (CBBC) to label NFs metabolites compounds. NFs metabolites compounds can be labeled rapidly only within 5 min at the room temperature (25 °C). The labeled derivatives showed excellent fluorescence property with maximum excitation and emission wavelengths of 375 nm and 410 nm, respectively. The labeled derivatives were analyzed on a reversed-phase Eclipse XDB-C18 column within 10 min. Excellent linearity (R2 > 0.995) of all NFs metabolites compounds was achieved with the limits of detection (LODs) and the limits of quantitations (LOQs) in the low micrograms per kilogram range of 0.20-0.30 μg·kg−1 and 0.70-1.00 μg·kg−1, respectively. Satisfactory recoveries in the range of 92.5-98.0% were obtained for all NFs metabolites compounds. Using the proposed HPLC-FLD method, we successfully determined four NFs metabolites compounds in different foodstuffs. As promising, this highly sensitive and reliable method would also be extended for the quantitation of NFs metabolites compounds in other samples.<br><br>Display Omitted<br>• A novel fluorescence labeling reagent CBBC was synthesized to label nitrofurans (NFs) metabolites compounds. • A pre-column derivatization HPLC-FLD method was developed for the determination of NFs metabolites compounds in foodstuffs. • LODs were in the low micrograms per kilogram range of 0.2-0.3 μg·kg-1.

A stable, effective, sensitive and selective method for simultaneous determination of 11 aldehydes in foodstuffs using a novel fluorescence-labeling reagent 2-(12-benzo[<i>b</i>]acridin-5-(12<i>H</i>)-yl)-acetohydrazide (BAAH) has been developed by HPLC with fluorescence detection and mass spectrometric identification. Response surface methodology was employed to optimize the derivatization reaction between BAAH and aldehydes. The completed separation of the 11 aldehydes was achieved in as little as 18 min on a reversed-phase Hypersil BDS C<sub>8</sub> column with aqueous acetonitrile as mobile phase in conjunction with a binary gradient elution. Excellent linear coefficients were found to be of >0.9994. This method also showed excellent reproducibility and offered the low detection limits of 0.21-0.58 nM (at a signal-to-noise ratio of 3). The developed method was successfully applied to analyze aldehydes in various foodstuffs and exhibited satisfactory applicability.

Sample pretreatment is a critical and essential step in almost all analytical procedures, especially for the analysis of biological and environmental samples with complex matrices. Dopamine molecules can easily self-polymerize under weak alkaline conditions, leading to a facile deposition of polydopamine (PDA) coatings on various surfaces. Since 2011, PDA chemistry has undergone significant expansion in its applications and is becoming one of the most attractive areas within the materials field. Here, recent advancements in the use of PDA-derived adsorbents for sample pretreatment were reviewed, with especial focus on surface modification strategies, extraction modes, and application fields. In addition, prospects of PDA-derived adsorbents for sample pretreatment are also proposed.<br>• Analytical applications of PDA-derived adsorbents are insightfully reviewed. • PDA has been directly used as an adsorbent for building extraction methods. • PDA has also been used as versatile mediums for fabricating various adsorbents. • PDA has greatly promoted the diversity of extraction modes because of its adhesion.

<b>Caragana korshinskii</b> Kom. (CK), one of afforestation tree species, is widely planted in northwest region of China. To compare the constituents as references for further utilization of CK, <b>C. microphyll</b> Lam. (CM) and <b>C. jubata</b> L. (CJ), been used as traditional Chinese medicine, were taken into consideration. To obtain more information on CK for further utilization, a sensitive and stable pre-column derivatization method for the analysis of fatty acids (FAs) was established using a novel labeling reagent 2-(5H-benzo[a]-carbazol-11(6H)-yl)ethyl hydrazine-carboxylate (BCEHC) by HPLC with fluorescence detector. The derivatives exhibit predominant fluorescence property at excitation and emission wavelengths of 330 nm and 380 nm, respectively. 16 derivatives of FAs including 13 saturated FAs and 3 unsaturated FAs are separated on a reversed-phase column with gradient elution within 30 min. The validation of method indicated that all FAs were given excellent linear responses with good linear coefficient of correlation being equal to or greater than 0.9985. The limits of detection (LODs) at a signal-to-noise ratio of 3 varied from 63.12 to 116.21 ng L−1. The developed method was successfully applied to determine the contents of free FAs (FFAs) in flowers, leaves and bark of CK and the samples were extracted by a green and simple method of gas purge microsyringe extraction. The results show that the contents of linoleic acid and linolenic acid are high in flowers and leaves while the bark is rich in linoleic acid. The total content of FFAs in all parts of CK is higher than that of CM. The distribution of FFAs in plants is obviously different even in the congeneric among different species.

A simple, sensitive and selective method based on one-step fluorescence labeling and ultrasound-assisted dispersive liquid-liquid microextraction (UA-DLLME) was developed for the determination of biogenic amines (BAs) in foodstuff samples by high-performance liquid chromatography (HPLC) with fluorescence detection (FLD). In this work, fluorescence probe 2-(11H-benzo[a]carbazol-11-yl) ethyl carbonochloridate (BCEC-Cl) was applied to label BAs. What followed was the UA-DLLME procedure that was carried out using chloroform and acetone as extraction and disperser solvents, respectively. A response surface methodology (RSM) based on a Box-Behnken design (BBD) was employed to optimize the main parameters affecting the fluorescence labeling and DLLME efficiency. Under the optimal conditions, this method offered low limits of detection (LODs) of 1.1-7.8 ng/mL and limits of quantification (LOQs) of 3.5-26.1 ng/mL. Finally, the method was successfully used for the determination of trace BAs in real samples and exhibited powerful potential in the high-throughput sample screening.

<br>Display Omitted<br>• A new protocol of synchronous determination of phenolic acids (PAs) was proposed by RP-HPLC-UV with double-wavelength. • The validated results demonstrated that the proposed method was feasible to determine PAs in plant samples. • The protocol was applied for analysis PAs in <b>Caragana korshinskii</b> Kom. which was mainly rich in chlorogenic acid, vanillic acid, caffeic acid and rosmarinic acid. • Total content of PAs in leaves was the highest compared with that of flowers and bark.<br>The utilization of <b>Caragana korshinskii</b> Kom. (CK) is currently concentrated on its ecological and fuel functions. Little attention has been devoted to the analysis of their phenolic acid (PA) components. To obtain more data for further utilization of CK, a new analysis protocol was tested to determine PAs synchronously by RP-HPLC-UV with double-wavelength (280 nm and 320 nm) detection. Specifically, separation of PA components was performed on a Hypersil Gold C18 reverse phase column with gradient elution. A four-factor-three-level Box-Behnken design was implemented for optimization of PA extraction. The results demonstrated that CK were rich primarily in chlorogenic acid, vanillic acid, caffeic acid and rosmarinic acid. The total content of PAs in CK leaves was the highest compared with its other parts. The distribution of total flavonoid content of CK was leaves > flowers > bark, while that of the total phenolic content of CK was flowers > leaves > bark.