Skip to main content Skip to search
Displaying 1 - 11 of 11
OBJECTIVES: The hepatoprotective effect of Gentianae macrophyllae root extract (GME) on alcoholic liver disease (ALD) was evaluated through ethanol induced ALD animal model.METHODS: Mice were randomly divided into control normal group (10 mice), ethanol-induced ALD model group (10 mice) and GME plus ethanol group (30 mice). Mice in model group were given intragastric administration with 50% (v/v) ethanol aqueous solution (200 μl for each) once daily for 19 days. Mice in control normal group received equal volumes of water. Mice in GME plus ethanol group were given intragastric administration with 50% (v/v) ethanol aqueous solution (200 μl for each) once daily at 10:00 a.m., after 1 h, mice in GME group sequentially were treated with 20, 40 and 100 mg/kg of GME by gastric gavage for 19 days. the average food and water consumed by the mice in every group were recorded every 2 days and body weight of every mouse in every group was measured every 2 days. KEY FINDINGS: Results showed that GME significantly improved alcohol induced liver injury in a dose-dependent manner. The impaired hepatic tissue structure was repaired and the collagen deposition declined after GME administration. Meanwhile, the level of malonaldehyde (MDA), Aspartate transaminase (AST) and alanine transaminase (ALT) (indicators of liver damage) in blood serum were significantly controlled by GME with a dose-dependent manner, moreover, body weight and liver index were also improved after administration of GME. Pro-inflammatory cytokines including MCP-1, TNF-α, IL-1 and IL-6 were detected through RT-PCR and ELISA in experiment and GME can significantly inhibit the expression of TNF-α, IL-1 and IL-6 but have no effect on MCP-1. In order to explore the mechanism of GME on ALD, MAPKs pathway was examined and results indicated that GME attenuated ALD through inhibiting the phosphorylation of JNK and P38 and further suppressing the initiation of inflammation. CONCLUSIONS: GME attenuated ALD through inhibiting the phosphorylation of JNK and P38 and further suppressing the initiation of inflammation.

BACKGROUND: In previous investigation, we have identified antioxidative effects of water-soluble ethanolic extracts (named as AKE) from Arenaria kansuensis and inferred that these extracts or their constituents may also have antihypoxic activity. A. kansuensis has been widely used in traditional Tibetan medicine for altitude sickness (AS) and has been known as the herb of anti-inflammatory and hypoxia resistance for a long time.PURPOSE: The purpose of this study is to evaluate protective effects of AKE and its major constituents against hypoxia-induced lethality in mice and RSC96 cells. STUDY DESIGN AND METHODS: Hypoxia-induced lethality in mice was investigated by 3 experimental animal models of hypoxia. Meanwhile, we established a RSC96 cell model of hypoxia which applied to screen and assess the anti-hypoxic activity of compounds isolated from A. kansuensis. RESULTS: Results indicated that AKE dose-dependently prolonged survival time of hypoxia induced lethality in mice compared to vehicle group and exhibited significantly anti-hypoxic effect. AKE also enhanced the number of red blood cells (RBC) and the concentration of hemoglobin (HB). 8 compounds were bio-guided separated and purified from AKE based on the animal model and cell model of hypoxia. Among which pyrocatechol (C16) and tricin 7-O-β-d-glucopyranoside (C13) were confirmed to express better protective effects on cell damage induced by hypoxia, suggesting that these two compounds are major active constituents of AKE for anti-hypoxia. CONCLUSION: This study demonstrated that pyrocatechol and tricin 7-O-β-d-glucopyranoside could be therapeutic candidates for treatment of AS. It is the first time to find the major active constituents of AKE for anti-hypoxia. Meanwhile, a RSC96 cell model of hypoxia was established to screen anti-hypoxic activity of compounds for the first time.

Background: Hypecoum leptocarpum Hook. f. et Thoms., which is used in traditional Tibetan medicine as an antipyretic, antitussive, analgesic, and anti-inflammatory agent, contains a variety of alkaloids that could be responsible for its analgesic and anti-inflammatory properties. Objective: The present study was designed to investigate the anti-inflammatory activity of the total alkaloids from H. leptocarpum (AHL) in vitro and to elucidate the chemical structure of the anti-inflammatory components in AHL. Materials and Methods: Chemical characterization was performed using liquid chromatography/quadrupole-time-of-flight mass and diode-array detector-high performance liquid chromatography. The anti-inflammatory effects of AHL were investigated by measuring the production of inflammatory cytokines using enzyme-linked immunosorbent assay and mRNA expression by real-time polymerase chain reaction in lipopolysaccharide-induced RAW 264.7 macrophages. Results: Chemical analysis of AHL revealed the presence of seven alkaloids, protopine (13.3%), cryptopine (1.5%), leptopidinine, leptocarpine, corydamine, dihydroleptopine, and oxohydrastinine. AHL significantly suppressed the production of nitric oxide (NO), interleukin-1 beta (IL-1 β), IL-6, and tumor necrosis factor-alpha (TNF-α) in LPS-induced RAW 264.7 cells. The maximum levels of suppression of NO, IL-1 β, IL-6, and TNF-α were 86.8% ± 2.2%, 70.1% ± 1.5%, 100.1% ± 2.5%, and 50.8% ± 3.6%, respectively. IC50values of suppression of cytokine production by AHL were 7.47 ± 2.81 μg/mL (NO), 0.12 ± 0.28 μg/mL (IL-1 β), 0.56 ± 0.37 μg/mL (IL-6), and 18.95 ± 5.23 μg/mL (TNF-α). AHL was also shown to downregulate mRNA expression of inducible NO synthase, IL-1 β, IL-6, and TNF-α in vitro. Conclusion: The study provides convincing evidence that AHL has strong anti-inflammatory activity. The potent activity is likely a result of synergy between the different alkaloids. Abbreviations used: The total alkaloids from H. leptocarpum: AHL; Nitric oxide: NO; Interleukin-1 beta IL-1β; Interleukin-6: IL-6; Tumor necrosis factor-alpha: TNF-α; Prostaglandin E2: PGE2; Inducible nitric oxide synthase: iNOS; Nonsteroidal anti-inflammatory drugs: NSAIDs; lipopolysaccharide: LPS; The total ion chromatograms: TIC; The liquid chromatography/quadrupole-time of flight: LC/Q-TOF; Nuclear factor-kappa B: NF-κB; Janus kinase-signal transducers and activators of transcription: JAK-STAT. [ABSTRACT FROM AUTHOR]

Traditional Tibetan medicine provides an abundant source of knowledge on human ailments and their treatment. As such, it is necessary to explore their active single compounds used to treat these ailments to discover lead compounds with good pharmacologic properties. In this present work, animal medicine, Osteon Myospalacem Baileyi extracts have been separated using a two-dimensional preparative chromatographic method to obtain single compounds with high purity as part of the following pharmacological research. Five high-purity cyclic dipeptides from chromatography work were studied for their dihydroorotate dehydrogenase inhibitory activity on recombinant human dihydroorotate dehydrogenase enzyme and compound Fr. 1-4 was found to contain satisfying inhibition activity. The molecular modeling study suggests that the active compound Fr. 1-4 may have a teriflunomide-like binding mode. Then, the energy decomposition study suggests that the hydrogen bond between Fr. 1-4 and Arg136 can improve the binding mode to indirectly increase the van der Waals binding energy. All the results above together come to the conclusion that the 2, 5-diketopiperazine structure group can interact with the polar residues well in the active pocket using electrostatic power. If some proper hydrophobic groups can be added to the sides of the 2, 5-diketopiperazine group, it is believed that better 2, 5-diketopiperazine dihydroorotate dehydrogenase inhibitors will be found in the future.

Animal medicine is an important part in traditional Tibetan medicine. However, information about the chemical composition of animal medicine is very limited, and there is a lack of comprehensive chromatographic purification methods. In the present work, animal medicine Osteon Myospalacem Baileyi was taken as an example and a novel two-dimensional preparative chromatographic method was established for the preparation of single compounds with high purity from the extract of Osteon Myospalacem Baileyi. The first-dimension preparation was carried on a DAISO Silica prep column, and ten fractions were obtained from the 112.3 g crude sample within 12 injections. A diol prep column used in nonaqueous mobile phase was selected for the second-dimension preparation. The purity of the compounds isolated from the crude extract was >98%, which indicated that the method built in this work was efficient to manufacture single compounds of high purity from the extract of Osteon Myospalacem Baileyi. Additionally, this method showed great potential in the purification of weakly polar chemicals and it could act as a good example in the purification of other traditional animal medicines.

Dynamic microwave-assisted extraction (DMAE) technique was employed for the extraction of polysaccharides from Lycium ruthenicum (LRP). The extracting parameters were optimized by using three-variable-three-level Box-Behnken design and response surface methodology (RSM) based on the single-factor experiments. RSM analysis indicated good correspondence between experimental and predicted values. The optimum extraction parameters for the yield of polysaccharide were ratio of water to raw material 31.5 mL/g, extracting time 25.8 min and microwave power 544.0 W. Polysaccharide was analyzed by chemical methods and Fourier-transform infrared (FT-IR). The antioxidant activities of LRP were investigated including scavenging activity of 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydrogen peroxide and free radicals of superoxide anion in vitro. The results of antioxidant activity exhibited LRP had the potential to be explored as novel natural antioxidant for using in functional foods or medicine.

ETHNOPHARMACOLOGICAL RELEVANCE: Osteon Myospalacem Baileyi, known as Sai long gu (Tibetan language, means "blind rat bone"), is the whole skeleton of Tibet plateau rodentia animal Myospalacem Baileyi. Osteon Myospalacem Baileyi had been widely used in the Tibet region as an anti-osteoporosis drug and since 1991 Osteon Myospalacem Baileyi has been listed in the Pharmacopoeia of People's Republic of China as the first-class animal new medical material. However, the mechanism of its anti-osteoporosis activities is still unclear. It is very desirable to solve this problem for further study.MATERIALS AND METHODS: in this study, preparative chromatography was employed to produce the active fraction ET4 from Osteon Myospalacem Baileyi crude. Flow cytometry and MTT assay were used to evaluate the toxicities of ET4. BMM cells were separated from mouse bone marrow to test the inhibition effects of ET4 on osteoclastogenesis. Western blot was used to find out the pathways, through which ET4 could act on osteoclastogenesis. Q-PCR was used to test the osteoclastogenesis marker genes. At last, immunofluorescence confocal microscopy was used to test the osteoclastogenesis master protein NFATc1 nuclei translocation. RESULTS: In this study we report that ET4, at the dose of 60μg/mL, significantly inhibited the formation of osteoclasts. Notably, ET4 did not affect the BMM viability at that dose. In addition, Osteon Myospalacem Baileyi could inhibit the expression of osteoclast marker genes, including cathepsin K (CTSK), nuclear factor of activated T cells cytoplasmic 1 (NFATc1), tartrate resistant acid phosphatase (TRAP, Acp5) dendrite cell-specific transmembrane protein (DC-STAMP), calcitonin receptor (CTR), osteoclast associated and immunoglobulin-like receptor (OSCAR). Mechanistically, ET4 dose- and time-dependently blocked the RANKL-induced activation of ERK and c-Fos as well as the induction of NFATc1 which is essential for OC formation. CONCLUSIONS: These data suggest that ET4 might be a useful alternative therapy in preventing or treating osteolytic diseases.

The effective, energy-saving and green subcritical fluid extraction (SFE) technology was applied to obtain the oil from <i>Lycium ruthenicum</i> seeds (LRSO). The optimal conditions of extraction parameters were found using response surface methodology with Box-Behnken experimental design. The maximum extraction yield of 21.20% was achieved at raw material particle size of 0.60 mm, extraction pressure of 0.63 MPa, temperature of 50 °C and time of 48 min. Other traditional extraction technologies were comparatively used. The physicochemical property of LRSO was analysed and the chemical compositions indicated that they were rich in unsaturated fatty acid, β-carotene, tocopherols and total phenolics. Furthermore, the antioxidant activity of LRSO was evaluated by scavenging activity of three kinds of radicals (DPPH·, ·OH and O₂⁻·) and lipid peroxidation <i>in vitro</i>. And its results showed the oil had the potential to be a novel antioxidant agent for using in the field of food, pharmaceuticals and cosmetics.<br>Lycium ruthenicum seeds oil (LRSO) was obtained by subcritical fluid extraction (SFE), and the process of SFE was optimized using response surface methodology. LRSO was evaluated by determination of physicochemical property, lipophilic compositions and antioxidant activity. The study revealed the possibility of LRSO as a potential source of valuable product for commercial ventures (food, pharmaceuticals or cosmetics).