Skip to main content Skip to search
Displaying 1 - 25 of 57

Pages

  • Page
  • of 3
Siwei Jianghuang Decoction Powder (SWJH) documented originally in the Four Medical Tantras-Blue Glaze exhibited beneficial effects on diabetic nephropathy (DN) via combined synergistically action of multiple formula components including Curcumae longae Rhizoma, Berberidis dictyophyllae Cortex, Phyllanthi Fructus and Tribuli Fructus. This study investigated the effects of SWJH on DN in db/db mice and possible underlying mechanisms. The ten weeks old db/db mice treated with SWJH by intra-gastric administration once a day for 8 weeks. After 8 weeks, body weight, water and food intake of mice were recorded. The level of fasting blood glucose (FBG) was measured. Serum creatinine (Scr), blood urea nitrogen (BUN), urine microalbumin (UMAlb), serum uric acid (UA) and urinary albumin excretion (UAE) were detected. An enzyme-linked immunosorbent assay was performed to test serum vascular endothelial growth factor (VEGF) and transforming growth factor-β1 (TGF-β1). Real-time PCR and Western blot analysis were used to test mRNA and protein expression of hypoxia inducible factor-1α (HIF-1α), VEGF and TGF-β1 in kidney tissue. SWJH treatment significantly reduced the levels of FBG, Scr, BUN, UMAlb, UA and UAE and retarded renal fibrosis. SWJH treatment further significantly reduced serum TGF-β1 level and downregulated the expression of HIF-1α, VEGF and TGF-β1 at both mRNA and protein levels. Principal component analysis and partial least squares regression and hierarchical cluster analysis demonstrated that SWJH treatment significantly ameliorated renal damage in DN mice. These consequences suggested that SWJH formulations were effective in the treatment of DN through regulating the HIF-1α, VEGF and TGF-β1 overexpression.

OBJECTIVES: The hepatoprotective effect of Gentianae macrophyllae root extract (GME) on alcoholic liver disease (ALD) was evaluated through ethanol induced ALD animal model.METHODS: Mice were randomly divided into control normal group (10 mice), ethanol-induced ALD model group (10 mice) and GME plus ethanol group (30 mice). Mice in model group were given intragastric administration with 50% (v/v) ethanol aqueous solution (200 μl for each) once daily for 19 days. Mice in control normal group received equal volumes of water. Mice in GME plus ethanol group were given intragastric administration with 50% (v/v) ethanol aqueous solution (200 μl for each) once daily at 10:00 a.m., after 1 h, mice in GME group sequentially were treated with 20, 40 and 100 mg/kg of GME by gastric gavage for 19 days. the average food and water consumed by the mice in every group were recorded every 2 days and body weight of every mouse in every group was measured every 2 days. KEY FINDINGS: Results showed that GME significantly improved alcohol induced liver injury in a dose-dependent manner. The impaired hepatic tissue structure was repaired and the collagen deposition declined after GME administration. Meanwhile, the level of malonaldehyde (MDA), Aspartate transaminase (AST) and alanine transaminase (ALT) (indicators of liver damage) in blood serum were significantly controlled by GME with a dose-dependent manner, moreover, body weight and liver index were also improved after administration of GME. Pro-inflammatory cytokines including MCP-1, TNF-α, IL-1 and IL-6 were detected through RT-PCR and ELISA in experiment and GME can significantly inhibit the expression of TNF-α, IL-1 and IL-6 but have no effect on MCP-1. In order to explore the mechanism of GME on ALD, MAPKs pathway was examined and results indicated that GME attenuated ALD through inhibiting the phosphorylation of JNK and P38 and further suppressing the initiation of inflammation. CONCLUSIONS: GME attenuated ALD through inhibiting the phosphorylation of JNK and P38 and further suppressing the initiation of inflammation.

BACKGROUND: In previous investigation, we have identified antioxidative effects of water-soluble ethanolic extracts (named as AKE) from Arenaria kansuensis and inferred that these extracts or their constituents may also have antihypoxic activity. A. kansuensis has been widely used in traditional Tibetan medicine for altitude sickness (AS) and has been known as the herb of anti-inflammatory and hypoxia resistance for a long time.PURPOSE: The purpose of this study is to evaluate protective effects of AKE and its major constituents against hypoxia-induced lethality in mice and RSC96 cells. STUDY DESIGN AND METHODS: Hypoxia-induced lethality in mice was investigated by 3 experimental animal models of hypoxia. Meanwhile, we established a RSC96 cell model of hypoxia which applied to screen and assess the anti-hypoxic activity of compounds isolated from A. kansuensis. RESULTS: Results indicated that AKE dose-dependently prolonged survival time of hypoxia induced lethality in mice compared to vehicle group and exhibited significantly anti-hypoxic effect. AKE also enhanced the number of red blood cells (RBC) and the concentration of hemoglobin (HB). 8 compounds were bio-guided separated and purified from AKE based on the animal model and cell model of hypoxia. Among which pyrocatechol (C16) and tricin 7-O-β-d-glucopyranoside (C13) were confirmed to express better protective effects on cell damage induced by hypoxia, suggesting that these two compounds are major active constituents of AKE for anti-hypoxia. CONCLUSION: This study demonstrated that pyrocatechol and tricin 7-O-β-d-glucopyranoside could be therapeutic candidates for treatment of AS. It is the first time to find the major active constituents of AKE for anti-hypoxia. Meanwhile, a RSC96 cell model of hypoxia was established to screen anti-hypoxic activity of compounds for the first time.

Background: Hypecoum leptocarpum Hook. f. et Thoms., which is used in traditional Tibetan medicine as an antipyretic, antitussive, analgesic, and anti-inflammatory agent, contains a variety of alkaloids that could be responsible for its analgesic and anti-inflammatory properties. Objective: The present study was designed to investigate the anti-inflammatory activity of the total alkaloids from H. leptocarpum (AHL) in vitro and to elucidate the chemical structure of the anti-inflammatory components in AHL. Materials and Methods: Chemical characterization was performed using liquid chromatography/quadrupole-time-of-flight mass and diode-array detector-high performance liquid chromatography. The anti-inflammatory effects of AHL were investigated by measuring the production of inflammatory cytokines using enzyme-linked immunosorbent assay and mRNA expression by real-time polymerase chain reaction in lipopolysaccharide-induced RAW 264.7 macrophages. Results: Chemical analysis of AHL revealed the presence of seven alkaloids, protopine (13.3%), cryptopine (1.5%), leptopidinine, leptocarpine, corydamine, dihydroleptopine, and oxohydrastinine. AHL significantly suppressed the production of nitric oxide (NO), interleukin-1 beta (IL-1 β), IL-6, and tumor necrosis factor-alpha (TNF-α) in LPS-induced RAW 264.7 cells. The maximum levels of suppression of NO, IL-1 β, IL-6, and TNF-α were 86.8% ± 2.2%, 70.1% ± 1.5%, 100.1% ± 2.5%, and 50.8% ± 3.6%, respectively. IC50values of suppression of cytokine production by AHL were 7.47 ± 2.81 μg/mL (NO), 0.12 ± 0.28 μg/mL (IL-1 β), 0.56 ± 0.37 μg/mL (IL-6), and 18.95 ± 5.23 μg/mL (TNF-α). AHL was also shown to downregulate mRNA expression of inducible NO synthase, IL-1 β, IL-6, and TNF-α in vitro. Conclusion: The study provides convincing evidence that AHL has strong anti-inflammatory activity. The potent activity is likely a result of synergy between the different alkaloids. Abbreviations used: The total alkaloids from H. leptocarpum: AHL; Nitric oxide: NO; Interleukin-1 beta IL-1β; Interleukin-6: IL-6; Tumor necrosis factor-alpha: TNF-α; Prostaglandin E2: PGE2; Inducible nitric oxide synthase: iNOS; Nonsteroidal anti-inflammatory drugs: NSAIDs; lipopolysaccharide: LPS; The total ion chromatograms: TIC; The liquid chromatography/quadrupole-time of flight: LC/Q-TOF; Nuclear factor-kappa B: NF-κB; Janus kinase-signal transducers and activators of transcription: JAK-STAT. [ABSTRACT FROM AUTHOR]

Andrias davidianus, the Chinese giant salamander, has been used in traditional Chinese medicine for many decades. However, no antimicrobial peptides (AMPs) have been described from A. davidianus until now. Here we describe a novel AMP (andricin 01) isolated from the mucus of A. davidianus. The peptide was recovered using an innovative magnetic cell membrane separation technique and was characterised using mass spectrometry and circular dichroism (CD) spectroscopy. Andricin 01 is comprised of ten amino acid residues with a total molecular mass of 955.1 Da. CD spectrum analysis gave results similar to the archetypal random coil spectrum, consistent with the three-dimensional rendering calculated by current bioinformatics tools. Andricin 01 was found to be inhibitory both to Gram-negative and Gram-positive bacteria. Furthermore, the peptide at the minimal bacterial concentration did not show cell cytotoxicity against human hepatocytes or renal cells and did not show haemolytic activity against red blood cells, indicating that is potentially safe and effective for human use. Andricin 01 shows promise as a novel antibacterial that may provide an insight into the development of new drugs.

Yak butter is one of the most important foods for the Tibetan people. Of note, its production yields waste yak milk as a by-product. In this work, waste yak milk protein hydrolysates made via Pepsin hydrolysis were shown to have antimicrobial activity. Furthermore, an innovative method of magnetic liposome adsorption combined with reversed-phase high performance liquid chromatography (RP-HPLC) was developed to screen for and purify the antimicrobial peptides. Two antimicrobial peptides were obtained and their amino acid sequences were determined by N-sequencing, namely Arg-Val-Met-Phe-Lys-Trp-Ala and Lys-Val-Ile-Ser-Met-Ile. The antimicrobial activity spectra of Arg-Val-Met-Phe-Lys-Trp-Ala included Bacillus subtilis, Staphylcoccus aureus, Listeria innocua, Escherichia coli, Enterobacter cloacae and Salmonella paratyphi, while the Lys-Val-Ile-Ser-Met-Ile peptide shows not only bacterial growth inhibition but also of fungi. Haemolytic testing suggested that these two antimicrobial peptides could be considered to have no haemolytic effect at their minimum inhibitory concentrations (MICs).

Because of the morphological and macroscopic similarity, many species of Erigeron and Aster (Asteraceae) are confusable and usually used under the same name "Meiduoluomi" in traditional Tibetan medicine (TTM). To find an easy, quick, and reliable method to authenticate and distinguish the eight main medicinal plants of these species, the light microscope was used to reveal the morphoanatomic details. The fixed, sectioned, and stained plant materials and epidermis materials were studied by microscopic techniques. The results of the microscopic features are systematically described and illustrated, and comparison parameters are presented. Furthermore, a key to the eight species of "Meiduoluomi" was constructed. Microscopy can be unambiguously used to authenticate and distinguish the eight main species of TTM "Meiduoluomi.";

Because of the morphological and macroscopic similarity, many species of <i>Erigeron</i> and <i>Aster</i> (Asteraceae) are confusable and usually used under the same name “Meiduoluomi” in traditional Tibetan medicine (TTM). To find an easy, quick, and reliable method to authenticate and distinguish the eight main medicinal plants of these species, the light microscope was used to reveal the morphoanatomic details. The fixed, sectioned, and stained plant materials and epidermis materials were studied by microscopic techniques. The results of the microscopic features are systematically described and illustrated, and comparison parameters are presented. Furthermore, a key to the eight species of “Meiduoluomi” was constructed. Microscopy can be unambiguously used to authenticate and distinguish the eight main species of TTM “Meiduoluomi.” Microsc. Res. Tech., 2009. © 2009 Wiley-Liss, Inc.

Zhuxi is a mineral medicine widely used in traditional Tibetan medicine throughout history. However, the bioactive component in Zhuxi still remains unclear. In order to enunciate the material basis of its pharmacological activity, the present research has determined the chemical component and structure of Zhuxi. X-ray fluorescence spectroscopy (XRF), inductively coupled plasma optical emission spectrometer (ICP-OES) and X-ray diffraction (XRD) were utilized to assay two samples of Zhuxi. XRF and ICP-OES analysis indicated that the main elements in Zhuxi are Fe, S and O, also containing some minor elements, such as Si, Na, Mg, Al, K, Ni, Ca, Ti and so on. XRD analysis suggested that the main crystal compound in Zhuxi is FeS2 (Cubic, Pa-3), also existing a few of Fe(+3)O(OH) (orthorhombic, Pbnm) and other some unknown compounds. These studies has highlighted the potential the element components and compound structures of Zhuxi, so it may be a good starting point for exploring the material basis of its pharmacological activity.

Liquid chromatography coupled with diode array detector and electrospray ionization mass spectrometry was developed for the qualitative and quantitative comparison of the main constituents in Saussurea laniceps (SL) and S. medusa (SM), two species of plants used under the name "Xuelianhua" in traditional Tibetan medicine. A method validation including linearity, limit of detection, precision and recovery was performed. The results showed that a good linearity with R<sup>2</sup> &gt; 0.99 was achieved, and the limit of detection of the quantified constituents was reported to be between 0.8 and 3.3 ng. The relative standard deviation value was below 3.82% for repeatability, and recovery studies for the quantified compounds were found to be within the range 90.92-103.12%. The unique properties of the present method were evaluated by analyzing twelve related herbal samples including five S. laniceps samples and seven S. medusa samples. Twenty-two compounds including phenolic acids, cumarins, lignanoids and flavonoids were identified by online ESI-MS and by comparison with literature data and standard compounds, and seven of them were quantified by LC-DAD simultaneously. The results demonstrated that the common constituents in the two herbs were protocatechuic acid, syringoside, chlorogenic acid, isoquercitroside, 1,5-dicaffeoylquinic acid, apigenin 7-O-Îø-d-glucoside, chrysoeriol 7-O-Îø-d-glucoside, acacetin 7-O-Îø-d-glucoside, apigenin and chrysoeriol. In the present study, it was found that the characteristic constituents were umbelliferone, scopoletin and their glucosides in S. laniceps, as well as arctiin and arctigenin in S. medusa. It was feasible to choose these characteristic compounds for the quality evaluation as well as chemical authentication of the two related herbs. The results also support discrimination between the two species when using them in folk medicine.

Compound Phyllanthus urinaria L (CP) is a traditional formula widely used in clinical practice for hepatocellular carcinoma (HCC), especially HBV-related HCC. HBx, HBV X gene encoded X protein, has positive correlation with the abnormal SHH pathway in HBV-related HCC. So, we predicted that CP has the capability of anti-HBV-related HCC maybe via inactivating the HBx-Hedgehog pathway axis. HepG2-HBx cells, HBx overexpression, were treated with CP (70μg/ml and 35 μg/ml, respectively) for 48 hours and the mice which received the HepG2-HBx cells were treated with CP (625mg/kg and 300 mg/kg, respectively) for 17 days to evaluate the effect of CP on HBV-related HCC. HBx could accelerate HepG2 cells proliferation, clone formation, and migration in vitro and also could strengthen tumor growth in mice. However, CP could significantly decrease HepG2-HBx cells proliferation, clone formation, and migration in vitro and also could inhibit tumors growth in mice in a dose-dependent manner. Mechanism studies suggested that HBx upregulated the mRNA and proteins expression of Sonic hedgehog (SHH), transmembrane receptor patched (PTCH-1), smoothened (SMO), oncogene homolog transcription factors-1 (GLI-1), and oncogene homolog transcription factors-2 (GLI-2), which are compositions of the SHH pathway. CP could inhibit the mRNA and proteins expression of SHH, PTCH-1, GLI-1, and HBx. It may be one of the underlying mechanisms of CP to delay the HBV-related HCC development through the HBx-SHH pathway axis inactivation. [ABSTRACT FROM AUTHOR]

Rheum tanguticum Maxim. ex Balf. (Rt), a traditional Tibetan medicine, is known to exert various bioactivities, including anti-inflammatory and antioxidative activities. The present study was conducted to investigate anti-inflammatory and antioxidative effects of Rt on activated microglia. Rt (10 μg/ml) significantly inhibited the mean protein level of interleukin-1β (IL-1β) in the organotypic hippocampal slice cultures following treatment with chromogranin A (CGA, 10 nM) and pancreastatin (10 nM), endogenous microglial activators present in senile plaques. Rt also significantly inhibited the expression and production of inflammatory and oxidative molecules, including IL-1β, tumor necrosis factor-α, and nitric oxide, by cultured microglia after treatment with CGA. These effects of Rt are considered to be mediated by the secretion of interleukin-10 (IL-10) from microglia, because neutralizing antibodies against IL-10 significantly canceled these effects. To explore the causative components of Rt responsible for inducing the secretion of IL-10, the effects of seven components of Rt on the IL-10 expression in microglia were examined. Among them, aloe-emodin (10 μM) and (+)-catechin (30 μM) were able to induce the secretion of IL-10 from cultured microglia. Therefore, aloe-emodin and (+)-catechin are deemed responsible for the antineuroinflammatory and antioxidative effects of Rt through the secretion of IL-10 from microglia. Accordingly, Rt is considered potentially useful for the treatment of AD.

Rheum tanguticum Maxim. ex Balf. (Rt), a traditional Tibetan medicine, is known to exert various bioactivities, including anti-inflammatory and antioxidative activities. The present study was conducted to investigate anti-inflammatory and antioxidative effects of Rt on activated microglia. Rt (10 μg/ml) significantly inhibited the mean protein level of interleukin-1β (IL-1β) in the organotypic hippocampal slice cultures following treatment with chromogranin A (CGA, 10 nM) and pancreastatin (10 nM), endogenous microglial activators present in senile plaques. Rt also significantly inhibited the expression and production of inflammatory and oxidative molecules, including IL-1β, tumor necrosis factor-α, and nitric oxide, by cultured microglia after treatment with CGA. These effects of Rt are considered to be mediated by the secretion of interleukin-10 (IL-10) from microglia, because neutralizing antibodies against IL-10 significantly canceled these effects. To explore the causative components of Rt responsible for inducing the secretion of IL-10, the effects of seven components of Rt on the IL-10 expression in microglia were examined. Among them, aloe-emodin (10 μM) and (+)-catechin (30 μM) were able to induce the secretion of IL-10 from cultured microglia. Therefore, aloe-emodin and (+)-catechin are deemed responsible for the antineuroinflammatory and antioxidative effects of Rt through the secretion of IL-10 from microglia. Accordingly, Rt is considered potentially useful for the treatment of AD.

In an effort to discover potent VEGFR-2 inhibitors, a series of 2,4 or 4,6-disubstituted <b>O</b>-linked indoles derivatives were designed and synthesized. The structural activity relationships led to identification of a potential VEGFR-2 inhibitor compound <b>18</b>.<br>Inhibition of VEGFR-2 signaling pathway has already become one of the most promising approaches for the treatment of cancer. In this study, we describe the design, synthesis, and biological evaluation of a series of <b>O</b>-linked indoles as potent inhibitors of VEGFR-2. Among these compounds, <b>18</b> showed significant anti-angiogenesis activities <b>via</b> VEGFR-2 in enzymatic proliferation assays, with IC50 value of 3.8 nmol/L. Kinase selectivity profiling revealed that <b>18</b> was a multitargeted inhibitor, and it also exhibited good potency against VEGFR-1, PDGFR-<b>α</b> and <b>β</b>.

BackgroundMeditation has been increasingly evaluated as an important complementary therapeutic tool for the treatment of depression. The present study employed resting-state functional magnetic resonance imaging (rs-fMRI) to examine the effect of body–mind relaxation meditation induction (BMRMI) on the brain activity of depressed patients and to investigate possible mechanisms of action for this complex intervention. Method 21 major depressive disorder patients (MDDs) and 24 age and gender-matched healthy controls (HCs) received rs-fMRI scans at baseline and after listening to a selection of audio designed to induce body–mind relaxation meditation. The rs-fMRI data were analyzed using Matlab toolbox to obtain the amplitude of low-frequency fluctuations (ALFF) of the BOLD signal for the whole brain. A mixed-design repeated measures analysis of variance (ANOVA) was performed on the whole brain to find which brain regions were affected by the BMRMI. An additional functional connectivity analysis was used to identify any atypical connection patterns after the BMRMI. Results After the BMRMI experience, both the MDDs and HCs showed decreased ALFF values in the bilateral frontal pole (BA10). Additionally, increased functional connectivity from the right dorsal medial prefrontal cortex (dmPFC) to the left dorsal lateral prefrontal cortex (dlPFC) and the left lateral orbitofrontal cortex (OFC) was identified only in the MDDs after the BMRMI. Limitation In order to exclude the impact of other events on the participants׳ brain activity, the Hamilton Rating Scales for Depression (HDRS) was not measured after the body–mind relaxation induction. Conclusion Our findings support the hypothesis that body–mind relaxation meditation induction may regulate the activities of the prefrontal cortex and thus may have the potential to help patients construct reappraisal strategies that can modulate the brain activity in multiple emotion-processing systems.

BackgroundMeditation has been increasingly evaluated as an important complementary therapeutic tool for the treatment of depression. The present study employed resting-state functional magnetic resonance imaging (rs-fMRI) to examine the effect of body–mind relaxation meditation induction (BMRMI) on the brain activity of depressed patients and to investigate possible mechanisms of action for this complex intervention. Method 21 major depressive disorder patients (MDDs) and 24 age and gender-matched healthy controls (HCs) received rs-fMRI scans at baseline and after listening to a selection of audio designed to induce body–mind relaxation meditation. The rs-fMRI data were analyzed using Matlab toolbox to obtain the amplitude of low-frequency fluctuations (ALFF) of the BOLD signal for the whole brain. A mixed-design repeated measures analysis of variance (ANOVA) was performed on the whole brain to find which brain regions were affected by the BMRMI. An additional functional connectivity analysis was used to identify any atypical connection patterns after the BMRMI. Results After the BMRMI experience, both the MDDs and HCs showed decreased ALFF values in the bilateral frontal pole (BA10). Additionally, increased functional connectivity from the right dorsal medial prefrontal cortex (dmPFC) to the left dorsal lateral prefrontal cortex (dlPFC) and the left lateral orbitofrontal cortex (OFC) was identified only in the MDDs after the BMRMI. Limitation In order to exclude the impact of other events on the participants׳ brain activity, the Hamilton Rating Scales for Depression (HDRS) was not measured after the body–mind relaxation induction. Conclusion Our findings support the hypothesis that body–mind relaxation meditation induction may regulate the activities of the prefrontal cortex and thus may have the potential to help patients construct reappraisal strategies that can modulate the brain activity in multiple emotion-processing systems.

BACKGROUND: With increasingly aged populations worldwide, the quality of life and psychosocial wellbeing of older adults, especially those with chronic disease, become of increasing importance. There are multiple studies on the use of internal Qigong, a popular mind-body exercise commonly practiced by older adults. However, the effectiveness of internal Qigong on quality of life, depressive symptoms, and self-efficacy on older adults remains unclear.OBJECTIVES: To review updated evidence to determine the effectiveness of internal Qigong interventions on quality of life, depressive symptoms, and self-efficacy among community-dwelling older adults with chronic disease. METHOD: Six databases (PubMed, CENTRAL, CINAHL, Embase, Scopus, CNKI) were systematically searched for studies from January 2008 to December 2018 in English and Chinese. Relevant randomised controlled trials (RCTs) were screened and assessed for risk of bias by two independent reviewers. A meta-analysis on study outcomes of quality of life, depressive symptoms and self-efficacy using the RevMan 5.3 software was performed. RESULTS: The search retrieved 3439 records. After screening, a total of 13 RCTs with 1340 participants were included in this review. Meta-analysis revealed a significant effect favouring internal Qigong on the quality of life (combined MD = 3.72; 95% CI: 2.27-5.18; p = 0.0001) compared to controls. No significant effects were found for depressive symptoms and self-efficacy. Low heterogeneity among the studies was found for quality of life, whereas high heterogeneity was shown for depressive symptoms and self-efficacy. CONCLUSION: Internal Qigong appears to have potential benefits on overall quality of life among community-dwelling older adults with chronic disease. The findings of this study suggest potential use of internal Qigong as an adjunct activity for chronic disease management. Future research may enhance the rigour of trials and explore theoretical underpinnings behind Qigong.

OBJECTIVE: To evaluate the condition of cancer-related fatigue (CRF) in breast cancer patients with chemotherapy and to explore the effect of Yoga on it. METHODS: After the completion of Yoga, 100 breast cancer patients with CRF (CFS>0) were selected and were randomly divided into the Yoga group and the control group (n=50). Patients in the control group only received routine cure and care while patients in the Yoga group received extra Yoga exercise, lasting for 4 months. Cancer fatigue scale (CFS) was evaluated in the 2nd, 4th and 6th round of chemotherapy. RESULTS: At the end, 82 cases qualified for the study, 42 cases for the control group and 40 for the Yoga group. The mean score of body fatigue was 12.67+/-3.46. There was no significant difference in CRF between the Yago group and the control group before the Yoga intervention (P>0.05). After the 4th round of chemotherapy, the mean scores of CFS and body fatigue in the Yoga group were significantly lower than that in the control group (P<0.05). After the 6th round of chemotherapy, the mean scores of CFS, body fatigue and cognitive fatigue in the Yoga group were lower than that in the control group (P<0.05). Repeated analysis of variance showed that the difference in the overall fatigue, body fatigue and cognitive fatigue between the Yoga group and the control group was significant (P<0.05); the time influence on the overall fatigue, body fatigue and emotional fatigue was significant difference between the 2 groups (P<0.05); there were interactions between the effect of Yago and time on the overall fatigue, body fatigue and cognitive fatigue (P<0.05). CONCLUSION: The body fatigue was more serious in breast cancer patients with chemotherapy. Yoga intervention could significantly reduce body fatigue, cognitive fatigue, thus reduce the overall fatigue in breast cancer patients with chemotherapy.

Diabetes mellitus (DM) is a serious metabolic disorder, where impaired postprandial blood glucose regulation often leads to severe health complications. The natural chemical erythritol is a C4 polyol approved by the U.S. Food and Drug Administration for use as a sweetener. Here, we examined a potential role for erythritol in the control of postprandial blood glucose levels in DM. An anti-postprandial hyperglycemia effect upon erythritol administration (500 mg kg-1) was demonstrated in alloxan-induced DM model mice by monitoring changes in blood glucose after intragastric administration of drugs and starch. We also found that erythritol most likely exerts its anti-postprandial hyperglycemic activities by inhibiting α-glucosidase in a competitive manner. This was supported by enzyme activity assays and molecular modeling experiments. In the latter experiments, it was possible to successfully dock erythritol into the catalytic pocket of α-glucosidase, with the resultant interaction likely driven by electrostatic interactions involving Asp215, Asp69, and Arg446 residues. This study suggests that erythritol may not only serve as a glucose substitute but also be a useful agent in the treatment of DM to help manage postprandial blood glucose levels.

The traditional Tibetan medicine Oxytropis falcata Bunge, in the Leguminosae family, is widely used in the west area owing to its significant anti-inflammatory and analgesic activities. O. falcata is rich in flavonoids, which are the main secondary metabolites and key bioactive components of this plant. Up to now, 91 flavonoids have been isolated from O. falcata, including isoflavone, flavone, flavonone, flavonol, homoisoflavonoid, chalcone, dihydrochalcone, chalcone dimers, and pterocarpans. The flavonoids in O. falcata have good anti-inflammatory and analgesic activities, which are comparable to those of a positive drug control (indomethacin). Furthermore, these flavonoids exhibit antibacterial, antioxidant, antitumour, anti-cardiovascular disease, and haemostatic activities. However, to date, O. falcata has not been reviewed comprehensively. Herein, the main secondary metabolites, biosynthetic pathways, and bioactivities of O. falcata are discussed.;

The traditional Tibetan medicine Oxytropis falcata Bunge, in the Leguminosae family, is widely used in the west area owing to its significant anti-inflammatory and analgesic activities. O. falcata is rich in flavonoids, which are the main secondary metabolites and key bioactive components of this plant. Up to now, 91 flavonoids have been isolated from O. falcata, including isoflavone, flavone, flavonone, flavonol, homoisoflavonoid, chalcone, dihydrochalcone, chalcone dimers, and pterocarpans. The flavonoids in O. falcata have good anti-inflammatory and analgesic activities, which are comparable to those of a positive drug control (indomethacin). Furthermore, these flavonoids exhibit antibacterial, antioxidant, antitumour, anti-cardiovascular disease, and haemostatic activities. However, to date, O. falcata has not been reviewed comprehensively. Herein, the main secondary metabolites, biosynthetic pathways, and bioactivities of O. falcata are discussed.

Pages

  • Page
  • of 3