Skip to main content Skip to search
Displaying 1 - 2 of 2
Recent evidence has established that consumption of High-fat diet (HFD)-induced obesity is associated with deficits in hippocampus-dependent memory/learning and mood states. Nevertheless the link between obesity and emotional disorders still remains to be elucidated. This issue is of particular interest during adolescence, which is important period for shaping learning/memory and mood regulation that can be sensitive to the detrimental effects of HFD. Our present study is focused to investigate behavioral and metabolic influences of short-term HFD intake in adolescent C57BL/6 mice. HFD caused weight gain, impaired glucose tolerance (IGT) and depression-like behavior as early as after 3 weeks which was clearly proved by a decrease in number of groomings in the open field test (OFT) and an increase in immobility time in the tail suspension test (TST). In the 4th week HFD induced obese model was fully developed and above behavioral symptoms were more dominant (decrease in number of crossings and groomings and increase in immobility time in both FST and TST). At the end of 6th week hippocampal analysis revealed the differences in morphology (reduced Nissl positive neurons and decreased the 5-HT<sub>1A</sub> receptor expression), neuronal survival (increased cleaved caspase-3 expression), synaptic plasticity (down regulation of <i>p</i>-CREB and BDNF), and inflammatory responses (increase in expression of pro-inflammatory cytokines and decrease in expression of anti-inflammatory cyokines) in HFD mice. Our results demonstrate that, high-fat feeding of adolescent mice could provoke “depression-like” behavior as early as 3 weeks and modulate structure, neuron survival and neuroinflammation in hippocampus as early as 6 weeks proving that adolescent age is much prone to adverse effects of HFD, which causes obesity, behavioral differences, memory and learning deficiencies.

Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease with a broad spectrum of liver injury. Oxidant stress is believed to be the pathogenesis of NAFLD as the "second hit". Hydrogen peroxide is widely used as an oxidant reagent to induce the oxidant injury of cells and larval zebrafish. Recently, cichoric acid is being studied extensively for its obesity attenuating, hepatic steatosis reduction and anti-oxidant effects. In this study, to identify whether CRA could protect the H2O2 induced oxidant injury via anti-oxidant impact by using L02 and HepG2 hepatocytes as in vitro and larval zebrafish as in vivo injury models, and evaluated the protective and anti-oxidant effects of CRA by pretreated it on both in vitro and in vivo models. CRA was found to reduce the production of ROS and MDA, activate the anti-oxidant enzymes SOD and GSH-px, and pathways Keap1-Nrf2 and HO-1. These results demonstrated that CRA might protect the liver injury by its anti-oxidant effect, which could be a potential therapeutic agent of NAFLD.