Skip to main content Skip to search
Displaying 1 - 8 of 8
The development of social emotions such as compassion is crucial for successful social interactions as well as for the maintenance of mental and physical health, especially when confronted with distressing life events. Yet, the neural mechanisms supporting the training of these emotions are poorly understood. To study affective plasticity in healthy adults, we measured functional neural and subjective responses to witnessing the distress of others in a newly developed task (Socio-affective Video Task). Participants’ initial empathic responses to the task were accompanied by negative affect and activations in the anterior insula and anterior medial cingulate cortex—a core neural network underlying empathy for pain. Whereas participants reacted with negative affect before training, compassion training increased positive affective experiences, even in response to witnessing others in distress. On the neural level, we observed that, compared with a memory control group, compassion training elicited activity in a neural network including the medial orbitofrontal cortex, putamen, pallidum, and ventral tegmental area—brain regions previously associated with positive affect and affiliation. Taken together, these findings suggest that the deliberate cultivation of compassion offers a new coping strategy that fosters positive affect even when confronted with the distress of others.
Zotero Collections:

A growing body of evidence suggests that empathy for pain is underpinned by neural structures that are also involved in the direct experience of pain. In order to assess the consistency of this finding, an image-based meta-analysis of nine independent functional magnetic resonance imaging (fMRI) investigations and a coordinate-based meta-analysis of 32 studies that had investigated empathy for pain using fMRI were conducted. The results indicate that a core network consisting of bilateral anterior insular cortex and medial/anterior cingulate cortex is associated with empathy for pain. Activation in these areas overlaps with activation during directly experienced pain, and we link their involvement to representing global feeling states and the guidance of adaptive behavior for both self- and other-related experiences. Moreover, the image-based analysis demonstrates that depending on the type of experimental paradigm this core network was co-activated with distinct brain regions: While viewing pictures of body parts in painful situations recruited areas underpinning action understanding (inferior parietal/ventral premotor cortices) to a stronger extent, eliciting empathy by means of abstract visual information about the other's affective state more strongly engaged areas associated with inferring and representing mental states of self and other (precuneus, ventral medial prefrontal cortex, superior temporal cortex, and temporo-parietal junction). In addition, only the picture-based paradigms activated somatosensory areas, indicating that previous discrepancies concerning somatosensory activity during empathy for pain might have resulted from differences in experimental paradigms. We conclude that social neuroscience paradigms provide reliable and accurate insights into complex social phenomena such as empathy and that meta-analyses of previous studies are a valuable tool in this endeavor.
Zotero Collections:

Humans tend to use the self as a reference point to perceive the world and gain information about other people's mental states. However, applying such a self-referential projection mechanism in situations where it is inappropriate can result in egocentrically biased judgments. To assess egocentricity bias in the emotional domain (EEB), we developed a novel visuo-tactile paradigm assessing the degree to which empathic judgments are biased by one's own emotions if they are incongruent to those of the person we empathize with. A first behavioral experiment confirmed the existence of such EEB, and two independent fMRI experiments revealed that overcoming biased empathic judgments is associated with increased activation in the right supramarginal gyrus (rSMG), in a location distinct from activations in right temporoparietal junction reported in previous social cognition studies. Using temporary disruption of rSMG with repetitive transcranial magnetic stimulation resulted in a substantial increase of EEB, and so did reducing visuo-tactile stimulation time as shown in an additional behavioral experiment. Our findings provide converging evidence from multiple methods and experiments that rSMG is crucial for overcoming emotional egocentricity. Effective connectivity analyses suggest that this may be achieved by early perceptual regulation processes disambiguating proprioceptive first-person information (touch) from exteroceptive third-person information (vision) during incongruency between self- and other-related affective states. Our study extends previous models of social cognition. It shows that although shared neural networks may underlie emotional understanding in some situations, an additional mechanism subserved by rSMG is needed to avoid biased social judgments in other situations.
Zotero Tags:
Zotero Collections:

Functional neuroimaging investigations in the fields of social neuroscience and neuroeconomics indicate that the anterior insular cortex (AI) is consistently involved in empathy, compassion, and interpersonal phenomena such as fairness and cooperation. These findings suggest that AI plays an important role in social emotions, hereby defined as affective states that arise when we interact with other people and that depend on the social context. After we link the role of AI in social emotions to interoceptive awareness and the representation of current global emotional states, we will present a model suggesting that AI is not only involved in representing current states, but also in predicting emotional states relevant to the self and others. This model also proposes that AI enables us to learn about emotional states as well as about the uncertainty attached to events, and implies that AI plays a dominant role in decision making in complex and uncertain environments. Our review further highlights that dorsal and ventro-central, as well as anterior and posterior subdivisions of AI potentially subserve different functions and guide different aspects of behavioral regulation. We conclude with a section summarizing different routes to understanding other people’s actions, feelings and thoughts, emphasizing the notion that the predominant role of AI involves understanding others’ feeling and bodily states rather than their action intentions or abstract beliefs.
Zotero Collections:

Emotions seem to play a critical role in moral judgment. However, the way in which emotions exert their influence on moral judgments is still poorly understood. This study proposes a novel theoretical approach suggesting that emotions influence moral judgments based on their motivational dimension. We tested the effects of two types of induced emotions with equal valence but with different motivational implications (anger and disgust), and four types of moral scenarios (disgust-related, impersonal, personal, and beliefs) on moral judgments. We hypothesized and found that approach motivation associated with anger would make moral judgments more permissible, while disgust, associated with withdrawal motivation, would make them less permissible. Moreover, these effects varied as a function of the type of scenario: the induced emotions only affected moral judgments concerning impersonal and personal scenarios, while we observed no effects for the other scenarios. These findings suggest that emotions can play an important role in moral judgment, but that their specific effects depend upon the type of emotion induced. Furthermore, induced emotion effects were more prevalent for moral decisions in personal and impersonal scenarios, possibly because these require the performance of an action rather than making an abstract judgment. We conclude that the effects of induced emotions on moral judgments can be predicted by taking their motivational dimension into account. This finding has important implications for moral psychology, as it points toward a previously overlooked mechanism linking emotions to moral judgments.
Zotero Collections:

People show autonomic responses when they empathize with the suffering of another person. However, little is known about how these autonomic changes are related to prosocial behavior. We measured skin conductance responses (SCRs) and affect ratings in participants while either receiving painful stimulation themselves, or observing pain being inflicted on another person. In a later session, they could prevent the infliction of pain in the other by choosing to endure pain themselves. Our results show that the strength of empathy-related vicarious skin conductance responses predicts later costly helping. Moreover, the higher the match between SCR magnitudes during the observation of pain in others and SCR magnitude during self pain, the more likely a person is to engage in costly helping. We conclude that prosocial motivation is fostered by the strength of the vicarious autonomic response as well as its match with first-hand autonomic experience.
Zotero Tags:
Zotero Collections:

The phenomenon of empathy entails the ability to share the affective experiences of others. In recent years social neuroscience made considerable progress in revealing the mechanisms that enable a person to feel what another is feeling. The present review provides an in-depth and critical discussion of these findings. Consistent evidence shows that sharing the emotions of others is associated with activation in neural structures that are also active during the first-hand experience of that emotion. Part of the neural activation shared between self- and other-related experiences seems to be rather automatically activated. However, recent studies also show that empathy is a highly flexible phenomenon, and that vicarious responses are malleable with respect to a number of factors—such as contextual appraisal, the interpersonal relationship between empathizer and other, or the perspective adopted during observation of the other. Future investigations are needed to provide more detailed insights into these factors and their neural underpinnings. Questions such as whether individual differences in empathy can be explained by stable personality traits, whether we can train ourselves to be more empathic, and how empathy relates to prosocial behavior are of utmost relevance for both science and society.
Zotero Collections: