Skip to main content Skip to search
Displaying 1 - 9 of 9
OBJECTIVE: To investigate the underlying mechanism of reduced myocardial ischemia-reperfusion (I/R) injury in rats using the traditional Tibetan medicine Sanweitanxiang powder (SWTX).METHODS: Rats were randomly divided into six groups (n = 10) as follows: (a) propranolol dinitrate control group, given propranolol dinitrate 0.02 g/kg for 10 days before I/R, (b) SWTX with a high dose group, given SWTX 1.5 g/kg for 10 days before I/R, (c) SWTX with a medium dose group, given SWTX 1.25 g/kg for 10 days before I/R, (d) sham group (Sham), in which the rat heart was exposed by pericardiotomy but without I/R, (e) SWTX with a low dose group, given SWTX 1.0 g/kg for 10 days before I/R, and (f) I/R injury group. Rats were intragastrically pretreated with propranolol dinitrate or SWTX. After that, the operation to cause ischemia and reperfusion was conducted. The histopathologic changes of rat hearts were observed by hematoxylin and eosin staining and transmission electron microscopy. Ca2+ homeostasis protein expression was determined by western blot. RESULTS: After SWTX pretreatment, the development of ultrastructural pathological changes from IR injury was attenuated. A decrease in the expression of B-cell lymphoma 2 associated X protein, and an increase in the expression of B-cell lymphoma 2 were observed. An increased activation of extracellular signal regulated kinases were found. Compared with the sham group, the expression of sarcoplasmic reticulum calcium-ATPase, phospholamban, and calsequestrin were all up-regulated after pretreatment with SWTX. CONCLUSION: The protective mechanism of SWTX pretreatment on myocardial I/R injury might be related to its effect on maintaining the balance of calcium homeostasis in rat heart.

OBJECTIVE: To investigate the underlying mechanism of reduced myocardial ischemia-reperfusion (I/R) injury in rats using the traditional Tibetan medicine Sanweitanxiang powder (SWTX). METHODS: Rats were randomly divided into six groups (n = 10) as follows: (a) propranolol dinitrate control group, given propranolol dinitrate 0.02 g/kg for 10 days before I/R, (b) SWTX with a high dose group, given SWTX 1.5 g/kg for 10 days before I/R, (c) SWTX with a medium dose group, given SWTX 1.25 g/kg for 10 days before I/R, (d) sham group (Sham), in which the rat heart was exposed by pericardiotomy but without I/R, (e) SWTX with a low dose group, given SWTX 1.0 g/kg for 10 days before I/R, and (f) I/R injury group. Rats were intragastrically pretreated with propranolol dinitrate or SWTX. After that, the operation to cause ischemia and reperfusion was conducted. The histopathologic changes of rat hearts were observed by hematoxylin and eosin staining and transmission electron microscopy. Ca2+ homeostasis protein expression was determined by western blot. RESULTS: After SWTX pretreatment, the development of ultrastructural pathological changes from IR injury was attenuated. A decrease in the expression of B-cell lymphoma 2 associated X protein, and an increase in the expression of B-cell lymphoma 2 were observed. An increased activation of extracellular signal regulated kinases were found. Compared with the sham group, the expression of sarcoplasmic reticulum calcium-ATPase, phospholamban, and calsequestrin were all up-regulated after pretreatment with SWTX. CONCLUSION: The protective mechanism of SWTX pretreatment on myocardial I/R injury might be related to its effect on maintaining the balance of calcium homeostasis in rat heart.

RuPeng15 Powder (RPP15) is a herbal multicompound remedy that originates from traditional Tibetan medicine and possesses antigout, anti-inflammatory, and antihyperuricemic properties based on the traditional conceptions. The present study was undertaken to evaluate the therapeutic effect of PRP15 in rat gouty arthritis induced by monosodium urate (MSU) crystals. In the present study, we found that treatment with RPP15 (0.4, 0.8, and 1.2 g/kg) in rats with gouty arthritis induced by MSU crystals significantly attenuated the knee swelling. Histomorphometric and immunohistochemistry analyses revealed that MSU-induced inflammatory cell infiltration and the elevated expressions of nuclear transcription factor-κB p65 (NF-κB p65) in synovial tissues were significantly inhibited, and enzyme-linked immunosorbent assay (ELISA) result showed that MSU-induced high levels of tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-8 (IL-8) in synovial fluid were reduced by treatment with RPP15 (0.4, 0.8, and 1.2 g/kg). We conclude that RPP15 may be a promising candidate for the development of a new treatment for gout and its activity of antigout may be partially related to inhibiting TNF-α, IL-1β, IL-8, and NF-κB p65 expression in the synovial tissues.

RuPeng15 Powder (RPP15) is a herbal multicompound remedy that originates from traditional Tibetan medicine and possesses antigout, anti-inflammatory, and antihyperuricemic properties based on the traditional conceptions. The present study was undertaken to evaluate the therapeutic effect of PRP15 in rat gouty arthritis induced by monosodium urate (MSU) crystals. In the present study, we found that treatment with RPP15 (0.4, 0.8, and 1.2 g/kg) in rats with gouty arthritis induced by MSU crystals significantly attenuated the knee swelling. Histomorphometric and immunohistochemistry analyses revealed that MSU-induced inflammatory cell infiltration and the elevated expressions of nuclear transcription factor-κB p65 (NF-κB p65) in synovial tissues were significantly inhibited, and enzyme-linked immunosorbent assay (ELISA) result showed that MSU-induced high levels of tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-8 (IL-8) in synovial fluid were reduced by treatment with RPP15 (0.4, 0.8, and 1.2 g/kg). We conclude that RPP15 may be a promising candidate for the development of a new treatment for gout and its activity of antigout may be partially related to inhibiting TNF-α, IL-1β, IL-8, and NF-κB p65 expression in the synovial tissues.

DMNG-3(3β-Methyl-[2-(4-nitrophenoxy)ethyl]-amino]con-5-enine), is a new and the potentially most potent acetylcholinesterase inhibitor recently obtained from conessine by N-demethylation and nucleophilic substitution reaction. In the present study, a step-down passive avoidance test was used to investigate whether DMNG-3 could modulate impairment of learning and memory induced by scopolamine, and a high performance liquid chromatography(HPLC) method for the determination of DMNG-3 in biological samples was applied to study its pharmacokinetics and tissues distribution. Separation was achieved on C18 column using a mobile phase consisting methanol-water (70:30, v/v) at a flow rate of 1.0ml/min. The intra- and inter-day precisions were good and the RSD was all lower than 1.30%. The mean absolute recovery of DMNG-3 in plasma ranged from 88.55 to 96.45 %. Our results showed oral administration of DMNG-3(10,25,50 mg/kg/day) can significantly improve the latency and number of errors and had a positive effect of improvement of learning and memory in mice in passive avoidance tests. The elimination half-life (T1/2) was 14.07±1.29, 15.87±1.03h, and the total clearance (CL) values were 0.70±0.11, 0.78±0.13 L/h/kg, respectively. The pharmacokinetic studies showed that DMNG-3 has a slowly clearance and large distribution volume in experimental animals, and its disposition is linear over the range of doses tested. The liver, small intestine, stomach, and large intestine were the major distribution tissues of DMNG-3 in mice. It was found that DMNG-3 could be detected in brain, suggesting that DMNG-3 can cross the blood-brain barrier. The present study shows that DMNG-3 can be possible developed as a new drug for the treatment of Alzheimer's disease in the future.

DMNG-3(3β-Methyl-[2-(4-nitrophenoxy)ethyl]-amino]con-5-enine), is a new and the potentially most potent acetylcholinesterase inhibitor recently obtained from conessine by N-demethylation and nucleophilic substitution reaction. In the present study, a step-down passive avoidance test was used to investigate whether DMNG-3 could modulate impairment of learning and memory induced by scopolamine, and a high performance liquid chromatography(HPLC) method for the determination of DMNG-3 in biological samples was applied to study its pharmacokinetics and tissues distribution. Separation was achieved on C18 column using a mobile phase consisting methanol-water (70:30, v/v) at a flow rate of 1.0ml/min. The intra- and inter-day precisions were good and the RSD was all lower than 1.30%. The mean absolute recovery of DMNG-3 in plasma ranged from 88.55 to 96.45 %. Our results showed oral administration of DMNG-3(10,25,50 mg/kg/day) can significantly improve the latency and number of errors and had a positive effect of improvement of learning and memory in mice in passive avoidance tests. The elimination half-life (T1/2) was 14.07±1.29, 15.87±1.03h, and the total clearance (CL) values were 0.70±0.11, 0.78±0.13 L/h/kg, respectively. The pharmacokinetic studies showed that DMNG-3 has a slowly clearance and large distribution volume in experimental animals, and its disposition is linear over the range of doses tested. The liver, small intestine, stomach, and large intestine were the major distribution tissues of DMNG-3 in mice. It was found that DMNG-3 could be detected in brain, suggesting that DMNG-3 can cross the blood-brain barrier. The present study shows that DMNG-3 can be possible developed as a new drug for the treatment of Alzheimer's disease in the future.

OBJECTIVE: To evaluate the influence of the Tibetan medicine RuPeng15 powder (RPP15) on uric acid levels, and explore its possible mechanisms of action in hyperuricemic animal models.METHODS: Hyperuricemic mice were generated by orally administering yeast extract paste twice daily (30 g/kg) for 8 days, to mimic human hyperuricemia induced by high-protein diets. Hyperuricemic rats were generated by intraperitoneal injection of 250 mg/kg potassium oxonate to each animal 1 h before the last oral administration of test compounds, which raised the serum uric acid level by inhibiting the decomposition of uric acid. Levels of uric acid and creatinine in serum and urine were detected by the phosphotungstic acid and picric acid methods respectively, and the activity of xanthine oxidase (XOD) was assayed using a commercial test kit. RESULTS: RPP15 (0.4, 0.8, 1.2 g/kg) significantly decreased the level of serum uric acid in healthy rats (P < 0.05). Furthermore, hyperuricemic rats treated with RPP15 (0.4, 0.8, 1.2 g/kg) had lower serum uric acid levels (P < 0.05), accompanied by lower urine uric acid (P < 0.05). For the hyperuricemic mice, the levels of uric acid in the serum decreased significantly (P < 0.05) and the activity of XOD in the liver was restored to normal levels after treatment with RPP15 (P < 0.05). CONCLUSION: RPP15 (0.4, 0.8, 1.2 g/kg) demonstrated an anti-hyperuricemic effect on both healthy and hyperuricemic animals, and the mechanism is most likely associated with inhibiting the activity of XOD.

OBJECTIVE: To evaluate the influence of the Tibetan medicine RuPeng15 powder (RPP15) on uric acid levels, and explore its possible mechanisms of action in hyperuricemic animal models. METHODS: Hyperuricemic mice were generated by orally administering yeast extract paste twice daily (30 g/kg) for 8 days, to mimic human hyperuricemia induced by high-protein diets. Hyperuricemic rats were generated by intraperitoneal injection of 250 mg/kg potassium oxonate to each animal 1 h before the last oral administration of test compounds, which raised the serum uric acid level by inhibiting the decomposition of uric acid. Levels of uric acid and creatinine in serum and urine were detected by the phosphotungstic acid and picric acid methods respectively, and the activity of xanthine oxidase (XOD) was assayed using a commercial test kit. RESULTS: RPP15 (0.4, 0.8, 1.2 g/kg) significantly decreased the level of serum uric acid in healthy rats (P < 0.05). Furthermore, hyperuricemic rats treated with RPP15 (0.4, 0.8, 1.2 g/kg) had lower serum uric acid levels (P < 0.05), accompanied by lower urine uric acid (P < 0.05). For the hyperuricemic mice, the levels of uric acid in the serum decreased significantly (P < 0.05) and the activity of XOD in the liver was restored to normal levels after treatment with RPP15 (P < 0.05). CONCLUSION: RPP15 (0.4, 0.8, 1.2 g/kg) demonstrated an anti-hyperuricemic effect on both healthy and hyperuricemic animals, and the mechanism is most likely associated with inhibiting the activity of XOD.