Displaying 1 - 8 of 8
A comparative analysis was undertaken to conduct an anatomical and micromorphological study of five species of Rhodiola—<i>R. kirilowii, R. yunnanensis, R. crenulata, R. fastigata</i>, and <i>R. quadrifida</i>—collected from the western Sichuan province plateau of China. Rhodiola plants are a popularly used ethnodrug from the Qinghai-Tibetan plateau of China. Modern studies have shown that the plants of Rhodiola possess different pharmacological activities, chemical constituents, and efficiencies in clinical application. To distinguish five main species of Rhodiola and ensure their safety and efficacy, microscopic characteristics of roots, rhizomes, and stems, including transverse sections, stem and foliar epidermis, as well as the crude drug powder, were observed. The fixed, sectioned, and stained plant materials, as well as the crude powder, were studied using a light microscope according to the usual microscopic techniques. The results of the microscopic features were systematically and comparatively described and illustrated. The five species have distinct microscopic characteristic differences, thus allowing us to distinguish between the species. Also, semi-quantitative and quantitative micrographic parameter tables were simultaneously presented. Further, a key to the five species and a comparative chart of the key authentication parameters based on these anatomic characteristics analyzed was drawn up and is presented for the Rhodiola species studied. The study indicated that light microscopy and related techniques provide a method that is convenient, feasible, and can be unambiguously applied to the authentication of species of Rhodiola. Microsc. Res. Tech., 2008. © 2008 Wiley-Liss, Inc.
Rhodiola is an increasingly widely used traditional Tibetan medicine and traditional Chinese medicine in China. The composition profiles of bioactive compounds are somewhat jagged according to different species, which makes it crucial to identify authentic Rhodiola species accurately so as to ensure clinical application of Rhodiola . In this paper, a nondestructive, rapid, and efficient method in classification of Rhodiola was developed by Fourier transform near-infrared (FT-NIR) spectroscopy combined with chemometrics analysis. A total of 160 batches of raw spectra were obtained from four different species of Rhodiola by FT-NIR, such as Rhodiola crenulata , Rhodiola fastigiata , Rhodiola kirilowii , and Rhodiola brevipetiolata . After excluding the outliers, different performances of 3 sample dividing methods, 12 spectral preprocessing methods, 2 wavelength selection methods, and 2 modeling evaluation methods were compared. The results indicated that this combination was superior than others in the authenticity identification analysis, which was FT-NIR combined with sample set partitioning based on joint x-y distances (SPXY), standard normal variate transformation (SNV) + Norris-Williams (NW) + 2nd derivative, competitive adaptive reweighted sampling (CARS), and kernel extreme learning machine (KELM). The accuracy (ACCU), sensitivity (SENS), and specificity (SPEC) of the optimal model were all 1, which showed that this combination of FT-NIR and chemometrics methods had the optimal authenticity identification performance. The classification performance of the partial least squares discriminant analysis (PLS-DA) model was slightly lower than KELM model, and PLS-DA model results were ACCU = 0.97, SENS = 0.93, and SPEC = 0.98, respectively. It can be concluded that FT-NIR combined with chemometrics analysis has great potential in authenticity identification and classification of Rhodiola , which can provide a valuable reference for the safety and effectiveness of clinical application of Rhodiola . [ABSTRACT FROM AUTHOR]
The first phytochemical investigation on the roots of <b>Ligularia purdomii</b> led to the isolation and identification of 18 compounds, including two eremophilane sesquiterpenoids (<b>1</b> and <b>2</b>), three benzofuran derivatives (<b>3</b>-<b>5</b>), a triterpenoid (<b>6</b>), two steroids (<b>7</b> and <b>8</b>), nine phenolic components (<b>9</b>-<b>17</b>), and a monofatty glyceride (<b>18</b>). The structural elucidation of the isolated compounds was performed by spectroscopic data and comparison with the literature. Compounds (−)-syringaresinol (<b>11</b>), scopoletin (<b>13</b>), 3,5-dimethoxy-4-hydroxy-benzaldehyde (<b>14</b>), and glycerol monolinoleate (<b>18</b>) have not been recorded in <b>Ligularia</b> genus previously. The chemotaxonomic significance of these isolated compounds has been summarized.<br>• First phytochemical investigation on <b>L. purdomii.</b> • 18 compounds were identified from the acetone extract of <b>L. purdomii.</b> • Four compounds were reported from the genus <b>Ligularia</b> for the first time. • The results had important significance for chemotaxonomy of <b>L. purdomii.</b>
BackgroundMeditation has been increasingly evaluated as an important complementary therapeutic tool for the treatment of depression. The present study employed resting-state functional magnetic resonance imaging (rs-fMRI) to examine the effect of body–mind relaxation meditation induction (BMRMI) on the brain activity of depressed patients and to investigate possible mechanisms of action for this complex intervention.
Method
21 major depressive disorder patients (MDDs) and 24 age and gender-matched healthy controls (HCs) received rs-fMRI scans at baseline and after listening to a selection of audio designed to induce body–mind relaxation meditation. The rs-fMRI data were analyzed using Matlab toolbox to obtain the amplitude of low-frequency fluctuations (ALFF) of the BOLD signal for the whole brain. A mixed-design repeated measures analysis of variance (ANOVA) was performed on the whole brain to find which brain regions were affected by the BMRMI. An additional functional connectivity analysis was used to identify any atypical connection patterns after the BMRMI.
Results
After the BMRMI experience, both the MDDs and HCs showed decreased ALFF values in the bilateral frontal pole (BA10). Additionally, increased functional connectivity from the right dorsal medial prefrontal cortex (dmPFC) to the left dorsal lateral prefrontal cortex (dlPFC) and the left lateral orbitofrontal cortex (OFC) was identified only in the MDDs after the BMRMI.
Limitation
In order to exclude the impact of other events on the participants׳ brain activity, the Hamilton Rating Scales for Depression (HDRS) was not measured after the body–mind relaxation induction.
Conclusion
Our findings support the hypothesis that body–mind relaxation meditation induction may regulate the activities of the prefrontal cortex and thus may have the potential to help patients construct reappraisal strategies that can modulate the brain activity in multiple emotion-processing systems.
BackgroundMeditation has been increasingly evaluated as an important complementary therapeutic tool for the treatment of depression. The present study employed resting-state functional magnetic resonance imaging (rs-fMRI) to examine the effect of body–mind relaxation meditation induction (BMRMI) on the brain activity of depressed patients and to investigate possible mechanisms of action for this complex intervention.
Method
21 major depressive disorder patients (MDDs) and 24 age and gender-matched healthy controls (HCs) received rs-fMRI scans at baseline and after listening to a selection of audio designed to induce body–mind relaxation meditation. The rs-fMRI data were analyzed using Matlab toolbox to obtain the amplitude of low-frequency fluctuations (ALFF) of the BOLD signal for the whole brain. A mixed-design repeated measures analysis of variance (ANOVA) was performed on the whole brain to find which brain regions were affected by the BMRMI. An additional functional connectivity analysis was used to identify any atypical connection patterns after the BMRMI.
Results
After the BMRMI experience, both the MDDs and HCs showed decreased ALFF values in the bilateral frontal pole (BA10). Additionally, increased functional connectivity from the right dorsal medial prefrontal cortex (dmPFC) to the left dorsal lateral prefrontal cortex (dlPFC) and the left lateral orbitofrontal cortex (OFC) was identified only in the MDDs after the BMRMI.
Limitation
In order to exclude the impact of other events on the participants׳ brain activity, the Hamilton Rating Scales for Depression (HDRS) was not measured after the body–mind relaxation induction.
Conclusion
Our findings support the hypothesis that body–mind relaxation meditation induction may regulate the activities of the prefrontal cortex and thus may have the potential to help patients construct reappraisal strategies that can modulate the brain activity in multiple emotion-processing systems.
A nondestructive, efficient, and rapid method for quantitative analysis of two bioactive components (salidroside and p-tyrosol) in Rhodiola crenulata, a traditional Tibetan medicine, by Fourier transform near-infrared (FT-NIR) spectroscopy was developed. Near-infrared diffuse reflectance spectra in the range of 4000 to 10000 cm(-1) of 50 samples of Rhodiola crenulata with different sources were measured. To get a satisfying result, partial least squares regression (PLSR) was used to establish NIR models for salidroside and p-tyrosol content determination. Different preprocessing methods, including smoothing, taking a second derivative, standard normal variate (SNV) transformation, and multiplicative scatter correction (MSC), were investigated to improve the model accuracy of PLSR. The performance of the two final models (salidroside model and p-tyrosol model) was evaluated by factors such as the values of correlation coefficient (R(2)), root mean square error of prediction (RMSEP), and root mean square error of calibration (RMSEC). The optimal results of the PLSR model of salidroside showed that R(2), RMSEP and RMSEC were 0.99572, 0.0294 and 0.0309, respectively. Meanwhile, in the optimization model of p-tyrosol, the R(2), RMSEP and RMSEC were 0.99714, 0.0154 and 0.0168, respectively. These results demonstrate that FT-NIR spectroscopy not only provides a precise, rapid method for quantitative analysis of major effective constituents in Rhodiola crenulata, but can also be applied to the quality control of Rhodiola crenulata.
A new flavonoid, along with 16 known ones, was separated from the aerial parts of Asterothamnus centrali-asiaticus. Their structures were elucidated by extensive spectroscopic methods, including 1D and 2D NMR techniques and HRESIMS. To confirm the structure of the new compound, computational prediction of its 13C chemical shifts was performed. All of the 17 flavonoids were reported from A. centrali-asiaticus for the first time. In addition, all flavonoids were evaluated for their antioxidant and α-glucosidase inhibitory activities. The results showed that 10 of them exhibited antioxidant activity. Meanwhile, four flavonoids displayed α-glucosidase inhibitory effect with IC50 values ranging from 38.9 to 299.7 μM.