Skip to main content Skip to search
Displaying 1 - 2 of 2
A green, simple and sensitive method was developed for the analysis of volatile carboxylic acids (VFAs) and perfluorocarboxylic acids (PFCAs) in food packaging materials. The acidic compounds in food packaging materials were first extracted by gas purge microsyringe extraction (GP-MSE) with 1.0 mL 0.1 mol·L<sup>−1</sup> NaOH solution, then the analytes were dispersive liquid-liquid microextracted (DLLME) by 50 μL chloroform as extraction solvent and 200 μL acetonitrile as dispersive solvent. The 2-(5-Benzoacridine) ethyl-p-toluenesulfonate (BAETS) with excellent fluorescence property was applied to enhance the high performance liquid chromatography (HPLC) sensitivity. The obtained recoveries for the VFAs ranged from 92.0 to 101 %. The method LODs calculated at a signal-to-noise ratio (S/N) of 3 were in the range of 0.80-3.40 μg·kg<sup>−1</sup>, while the LOQs calculated at S/N of 10 were in the range of 2.5-10.2 μg·kg<sup>−1</sup>. All compounds were in good linearity with concentration coefficients of higher than 0.997. Perfluorooctanoic acid (PFOA) was found in all of the 15 kinds of samples analyzed with concentrations ranging from 4.86-7.56 μg·kg<sup>−1</sup>. Acetic acid, butyric acid, and caprylic acid were found in half of the samples analyzed. The other analytes were also found in more than 30 % samples with concentrations varied between 3.96 and 293 μg·kg<sup>−1</sup>.

In this study, a green, simple, and sensitive method was developed for the analysis of aliphatic aldehyde s from fried meat by using a modified gas purge-microsyringe extraction (GP-MSE) system in combination with high-performance liquid chromatography (HPLC) with fluorescence detection. The modified GP-MSE system possessed two gas channels and showed better recoveries for compounds with diverse density in comparison with one gas channel GP-MSE system. Target compounds in fried meat were effectively extracted without the traditional solvent extraction and lipid removing process, while the HPLC sensitivity of aldehyde s was enhanced by introducing 2-(12-benzo[b]acridin-5(12H)-yl)-acetohydrazide (BAAH) with excellent fluorescence property into the molecules. Parameters influencing the extraction efficiency and HPLC sensitivity were optimized. The limits of detection (LODs) ranged from 0.30 to 0.45 μg/kg, and the limits of quantification (LOQs) ranged from 1.0 to 1.5 μg/kg. The recoveries of the target compounds were in the range of 86.9 to 95.6%. The proposed method was successfully applied to the analysis of aldehyde s in fried meat samples. Formaldehyde, acetaldehyde, pentanal, hexanal, heptanal, octanal, nonaldehyde, and decanal were all found in fried meat samples with concentrations ranging from 0.05 to 17.8 mg/kg.