Skip to main content Skip to search
Displaying 1 - 6 of 6
Species identification and quality control of Tibetan medicines are an important part of its modernization studies, and they have important significance for ensuring the safety and effectiveness of Tibetan medicines in clinical application. In order to provide a reference for the modernization research of Tibetan medicines, this paper summarized the research progress of species identification, quality standards and quality evaluation of Tibetan medicines in the past 10 years. It also introduces the application examples of some new technologies and methods, such as DNA barcoding, infrared spectroscopy and 1H NMR-based metabolomics.; Copyright© by the Chinese Pharmaceutical Association.

To differentiate three medicinal Hippopahe species of seabuckthorn, a combined genetic and chemical identification method was established in this study. ITS2 and psbA-trnH were tested for identification of 3 species of seabuckthorn. Detection of the kimura 2-parameter (K2P) distance, the neighbor-joining (NJ) tree and the barcoding gap were used to assess the identification efficiency. ¹H-NMR based metabolic method was applied to acquire the profile of metabolites. PCA was used to analysis the metabolite data. The results indicated that DNA barcode combined ¹H-NMR based metabolic method is a powerful tool for the identification of 3 medicinal Hippopahe species of seabuckthorn. The finding demonstrated that different genetic variation and chemical constituents existed among 3 medicinal Hippopahe species of seabuckthorn. The combined identification method will improve the reliability of species discrimination and could be applicable to much other ethnic medicine which has various origins in China.

The ITS2 barcode was used toidentify Tibetan medicine "Dida", and tosecure its quality and safety in medication. A total of 13 species, 151 experimental samples for the study from the Tibetan Plateau, including Gentianaceae Swertia, Halenia, Gentianopsis, Comastoma, Lomatogonium ITS2 sequences were amplified, and purified PCR products were sequenced. Sequence assembly and consensus sequence generation were performed using the CodonCode Aligner V3.7.1. The Kimura 2-Parameter (K2P) distances were calculated using MEGA 6.0. The neighbor-joining (NJ) phylogenetic trees were constructed. There are 31 haplotypes among 231 bp after alignment of all ITS2 sequence haplotypes, and the average G±C content of 61.40%. The NJ tree strongly supported that every species clustered into their own clade and high identification success rate, except that Swertia bifolia and Swertia wolfangiana could not be distinguished from each other based on the sequence divergences. DNA barcoding could be used as a fast and accurate identification method to distinguish Tibetan medicine "Dida" to ensure its safe use.

Hippophae rhamnoides subsp. sinensis Rousi, Hippophae gyantsensis (Rousi) Y. S. Lian, Hippophae neurocarpa S. W. Liu & T. N. He and Hippophae tibetana Schlechtendal are typically used under one name “Shaji”, to treat cardiovascular diseases and lung disorders in Tibetan medicine (TM). A complete set of infrared (IR) macro-fingerprints of these four Hippophae species should be characterized and compared simply, accurately, and in detail for identification. In the present study, tri-step IR spectroscopy, which included Fourier transform IR (FT-IR) spectroscopy, second derivative IR (SD-IR) spectroscopy and two-dimensional correlation IR (2D-IR) spectroscopy, was employed to discriminate the four Hippophae species and their corresponding extracts using different solvents. The relevant spectra exhibited the holistic chemical compositions and variations. Flavonoids, fatty acids and sugars were found to be the main chemical components. Characteristic peak positions, intensities and shapes derived from FT-IR, SD-IR and 2D-IR spectra provided valuable information for sample discrimination. Principal component analysis (PCA) of spectral differences was performed to illustrate the objective identification. Results showed that the species and their extracts can be clearly distinguished. Thus, a quick, precise and effective tri-step IR spectroscopy combined with PCA can be applied to identify and discriminate medicinal materials and their extracts in TM research.

With the development of Tibetan medicine industry, the demands for Tibetan medicine were rising sharply. In addition, with the eco-environment vulnerability of Qinghai-Tibet Plateau region and the phenomenon of synonymies and homonymies in Tibetan medicine, there were a lack of resources and varieties in the clinical application of Tibetan medicine. At present, the shortage of Tibetan medicine and the inadequacy of its quality standard have become the two major problems that seriously restricted the sustainable development of Tibetan medicine industry. Therefore, it is important to develop the resources investigation and quality evaluation for Tibetan medicine, which were contribute to its resources protection and sustainable utilization. In this paper, current status of resources investigation, quality standardization, artificial breeding and germplasm resources of Tibetan medicine were presented by the integrated application of the new technologies, such as DNA barcoding and 1H-NMR, which provided a reference information for resources protection, sustainable utilization, variety identification and quality standardization of Tibetan medicine resources in Qinghai-Tibet Plateau.

The 1H-NMR fingerprints of three different species tibetan medicine sea buckthorn were established by 1H-HMR metabolomics to find out different motablism which could provide a new method for the quality evaluation of sea buckthorn. The obtained free induction decay (FID) signal will be imported into MestReNova software and into divide segments. The data will be normalized and processed by principal component analysis and.partial least squares discriminant analysis to perform pattern recognition. The results showed that 25 metabolites belonging to different chemical types were detected from sea buckthorn,including flavonoids, triterpenoids, amino acids, carbohydrates, fatty acids, etc. PCA and PLS-DA analysis showed three different varietiest of sea buckthorn that can be clearly separated by the content of L-quebrachitol, malic acid and some unidentified sugars, which can be used as the differences metabolites of three species of sea buckthorn. 1H-NMR-based metabonomies method had a holistic characteristic with sample preparation and handling. The results of this study can offer an important reference for the species identification and quality control of sea buckthorn.