Displaying 1 - 2 of 2
Acute altitude reaction is a stress response of organism to special altitude environmental factors such as hypoxia, low pressure, cold, dry and strong ultraviolet. As it is the most incident disease in high altitude areas, its prevention remains a problem to be solved. In China, the traditional Chinese (Tibetan) medicines have been recognized as an effective means of preventing and treating acute altitude sicknesses. Some single-recipe or compound traditional Chinese (Tibetan) medicines have been proved to be effective for acute altitude sicknesses. In this article, we will describe traditional Chinese (Tibetan) medicines of different types with efficacy in prevention and treatment of altitude sicknesses.;
Compound Phyllanthus urinaria L (CP) is a traditional formula widely used in clinical practice for hepatocellular carcinoma (HCC), especially HBV-related HCC. HBx, HBV X gene encoded X protein, has positive correlation with the abnormal SHH pathway in HBV-related HCC. So, we predicted that CP has the capability of anti-HBV-related HCC maybe via inactivating the HBx-Hedgehog pathway axis. HepG2-HBx cells, HBx overexpression, were treated with CP (70μg/ml and 35 μg/ml, respectively) for 48 hours and the mice which received the HepG2-HBx cells were treated with CP (625mg/kg and 300 mg/kg, respectively) for 17 days to evaluate the effect of CP on HBV-related HCC. HBx could accelerate HepG2 cells proliferation, clone formation, and migration in vitro and also could strengthen tumor growth in mice. However, CP could significantly decrease HepG2-HBx cells proliferation, clone formation, and migration in vitro and also could inhibit tumors growth in mice in a dose-dependent manner. Mechanism studies suggested that HBx upregulated the mRNA and proteins expression of Sonic hedgehog (SHH), transmembrane receptor patched (PTCH-1), smoothened (SMO), oncogene homolog transcription factors-1 (GLI-1), and oncogene homolog transcription factors-2 (GLI-2), which are compositions of the SHH pathway. CP could inhibit the mRNA and proteins expression of SHH, PTCH-1, GLI-1, and HBx. It may be one of the underlying mechanisms of CP to delay the HBV-related HCC development through the HBx-SHH pathway axis inactivation. [ABSTRACT FROM AUTHOR]