Skip to main content Skip to search
Displaying 1 - 1 of 1
Oxidative stress has been suggested to play a causative role in the development of obesity-induced insulin resistance and type 2 diabetes. Given the antioxidant potency of previously reported xanthones isolated from <i>Swertia mussotii</i>. These natural products were further evaluated against other targets in diabetes, aldose reductase and α-glucosidase, in order to identify novel multitarget-directed antidiabetic agents. Among the 14 xanthones screened, 1,3,7,8-tetrahydroxyxanthone (<b>6</b>), 1,3,5,8-tetrahydroxyxanthone (<b>7</b>), and 2,3,6,8-tetrahydroxyxanthone-7C-(β-D-glucoside) (<b>12</b>) were confirmed as good antioxidants and α-glucosidase inhibitors. Xanthone <b>7</b> was also confirmed as a potent inhibitor of aldose reductase (ALR2). Xanthone <b>7</b> was the most active α-glucosidase and ALR2 inhibitor, with IC<sub>50</sub> values of 5.2±0.3 μM and 88.6±1.6 nM, respectively, while compound <b>12</b> was shown to be the most active antioxidant. Given the overall profile, xanthone <b>7</b> is considered to be the most promising multitarget antidiabetic agent, and may have potential for the treatment of both diabetes and diabetic complications.<br><b>Nature′s medicine cabinet:</b> Xanthones isolated from <i>Swertia mussotii</i> were evaluated as multitarget antidiabetic agents. 1,3,5,8-Tetrahydroxylxanthone was identified as a good antioxidant, and also exhibited potent inhibition of α-glucosidase and aldose reductase, proven targets in the treatment of diabetes.