Displaying 1 - 6 of 6
OBJECTIVE: To establish a method for determination of 10 ingredients such as gentiopicroside, sweroside, and mangiferin in India swertia, and settle the index components and their limits.METHOD: By Welch materials AQ-C18 column, determination was conducted by the gradient elution with methanol and 0.4% formic acid as mobile phase, with column temperature 30 degrees C, flow rate at 1.0 mL x min(-1), and 254 nm as the detection wavelength.
RESULT: The linear relatives of 10 ingredients were good. The method showed the high precision and good reproducibility, and recovery rates were between 97% and 103%. The ingredients of market com-modities varied greatly.
CONCLUSION: This method is simple, sensitive, reproducible, and applicable to the determination of the main ingredients in India Swertia. Sweroside and mango glycosides were suggested as the index components for determination in Jia Di (Swertia chirayita), and their content limits are not less than 0.1%, 0.3%, respectively.
OBJECTIVE: To establish the HPLC fingerprint for Halenia elliptica herbs, a traditional Tibetan medicine, in order to study constituents contained in H. elliptica from different habitats and compare their differences.METHOD: HPLC analysis was made on a Welchrom-C18 (4.6 mm x 250 mm, 5 microm) with water and acetonitrile as mobile phase. The wavelength was detected as 265 nm, the flow rate was 1.0 mL x min(-1), and the column temperature was 40 degrees C. The software for chromatographic fingerprint was applied to analyze the similarity. And principal component analysis was conducted.
RESULT: Twelve common chromatographic peaks were identified by fingerprint, showing a low similarity in constituent and variety. The significant difference in the proportion between xanthones and aglycones in each batch of herbs indicated no notable correlation between constituent characteristics and geographic locations of habitats.
CONCLUSION: The method is so simple, exclusive, stable and highly repeatable that it can provide reference for identification and quality assessment of H. elliptica herbs.
OBJECTIVE: To evaluate the medicinal reasonableness and resource utilization of Dida from different species.METHOD: With common characteristic absorption peaks of HPLC fingerprints and SPSS cluster, the composition similarity of Dida from different species was evaluated.
RESULT: The composition similarity of HPLC fingerprints of 33 Dida samples from 15 species and 1 variety originated from Swertia, Halenia, Gentianopsis, Lomatogonium was difference. The original species can be clustered into four groups by the relative area of 10 common characteristic peaks of HPLC fingerprints. The compositions of four different genera are quite different.
CONCLUSION: Because of containing iridoids, xanthones, and triterpenes which have liver protection and cholagogue functions, all of species from Swertia, Halenia, Gentianopsis and Lomatogonium in Gentianaceae are classified as Dida in Tibetan medicine. According to the composition difference among different species, the HPLC fingerprints established for Dida from different source are an effective means to identify nd control the quality of Dida.
Swertia mussotii Franch. and Swertia chirayita Buch.-Ham. have been commonly used under the same name "Zangyinchen" for the treatment of liver and gallbladder diseases in traditional Tibetan medicine. Detailed characterization and comparison of the complete set of metabolites of these two species are critical for their objective identification and quality control. In this study, a rapid, simple and comprehensive (1)H NMR-based metabolomics method was first developed to differentiate the two species. A broad range of metabolites, including iridoid glycosides, xanthones, triterpenoids, flavonoids, carbohydrates, and amino acids, were identified. Statistical analysis showed evident differences between the two species, and the major markers responsible for the differences were screened. In addition, quantitative (1)H NMR method (qHNMR) was used for the target analysis of the discriminating metabolites. The results showed that S. mussotii had significantly higher contents of gentiopicrin, isoorientin, glucose, loganic acid, and choline, whereas S. chirayita exhibited higher levels of swertiamarin, oleanolic acid, valine, and fatty acids. These findings indicate that (1)H NMR-based metabolomics is a reliable and effective method for the metabolic profiling and discrimination of the two Swertia species, and can be used to verify the genuine origin of Zangyinchen.
Swertia mussotii Franch. and Swertia chirayita Buch.-Ham. have been commonly used under the same name 'Zangyinchen' for the treatment of liver and gallbladder diseases in traditional Tibetan medicine. Detailed characterization and comparison of the complete set of metabolites of these two species are critical for their objective identification and quality control. In this study, a rapid, simple and comprehensive H-1 NMR-based metabolomics method was first developed to differentiate the two species. A broad range of metabolites, including iridoid glycosides, xanthones, triterpenoids, flavonoids, carbohydrates, and amino acids, were identified. Statistical analysis showed evident differences between the two species, and the major markers responsible for the differences were screened. In addition, quantitative H-1 NMR method (qHNMR) was used for the target analysis of the discriminating metabolites. The results showed that S. mussotii had significantly higher contents of gentiopicrin, isoorientin, glucose, loganic acid, and choline, whereas S. chirayita exhibited higher levels of swertiamarin, oleanolic acid, valine, and fatty acids. These findings indicate that H-1 NMR-based metabolomics is a reliable and effective method for the metabolic profiling and discrimination of the two Swertia species, and can be used to verify the genuine origin of Zangyinchen. (C) 2014 Elsevier B.V. All rights reserved.
<br>• A 1H NMR-based method is first developed to differentiate two <b>Swertia</b> species. • The two <b>Swertia</b> species exhibit significant differences in their metabolic profiling. • Nine metabolic markers responsible for the differences are screened out. • A qHNMR method is used for quantitative analysis of the discriminating metabolites. • The proposed 1H NMR-based metabolomics method is rapid, reliable and effective.<br><b>Swertia mussotii</b> Franch. and <b>Swertia chirayita</b> Buch.-Ham. have been commonly used under the same name “Zangyinchen” for the treatment of liver and gallbladder diseases in traditional Tibetan medicine. Detailed characterization and comparison of the complete set of metabolites of these two species are critical for their objective identification and quality control. In this study, a rapid, simple and comprehensive 1H NMR-based metabolomics method was first developed to differentiate the two species. A broad range of metabolites, including iridoid glycosides, xanthones, triterpenoids, flavonoids, carbohydrates, and amino acids, were identified. Statistical analysis showed evident differences between the two species, and the major markers responsible for the differences were screened. In addition, quantitative 1H NMR method (qHNMR) was used for the target analysis of the discriminating metabolites. The results showed that <b>S. mussotii</b> had significantly higher contents of gentiopicrin, isoorientin, glucose, loganic acid, and choline, whereas <b>S. chirayita</b> exhibited higher levels of swertiamarin, oleanolic acid, valine, and fatty acids. These findings indicate that 1H NMR-based metabolomics is a reliable and effective method for the metabolic profiling and discrimination of the two <b>Swertia</b> species, and can be used to verify the genuine origin of Zangyinchen.