Displaying 1 - 3 of 3
PURPOSE: The purpose of this study was to determine injuries to osteo-ligamentous structures of cervical column, mechanisms, forces, severities and AIS scores from vertical accelerative loading. METHODS: Seven human cadaver head-neck complexes (56.9 +/- 9.5 years) were aligned based on seated the posture of military soldiers. Army combat helmets were used. Specimens were attached to a vertical accelerator to apply caudo-cephalad g-forces. They were accelerated with increasing insults. Intermittent palpation and radiography were done. A roof structure mimicking military vehicle interior was introduced after a series of tests and experiments were conducted following similar protocols. Upon injury detection, CT and dissection were done. Temporal force responses were extracted, peak forces and times of occurrence were obtained, injury severities were graded, and spine stability was determined. RESULTS: Injuries occurred in tests only when the roof structure was included. Responses were tri-phasic: initial thrust, secondary tensile, tertiary roof contact phases. Peak forces: 1364-4382 N, initial thrust, 165-169 N, secondary tensile, 868-3368 N tertiary helmet-head roof contact phases. Times of attainments: 5.3-9.6, 31.7-42.6, 55.0-70.8 ms. Injuries included fractures and joint disruptions. Multiple injuries occurred in all but one specimen. A majority of injury severities were AIS = 2. Spines were considered unstable in a majority of cases. CONCLUSIONS: Spine response was tri-phasic. Injuries occurred in roof contact tests with the helmeted head-neck specimen. Multiplicity and unstable nature of AIS = 2 level injuries, albeit at lower severities, might predispose the spine to long-term accelerated degenerative changes. Clinical protocols should include a careful evaluation of sub-catastrophic injuries in military patients.
BACKGROUND: While cervical spine injury biomechanics reviews in motor vehicle and sports environments are available, there is a paucity of studies in military loadings. This article presents an analysis on the biomechanics and applications of cervical spine injury research with an emphasis on human tolerance for underbody blast loadings in the military. METHODS: Following a brief review of published military studies on the occurrence and identification of field trauma, postmortem human subject investigations are described using whole body, intact head-neck complex, osteo-ligamentous cervical spine with head, subaxial cervical column, and isolated segments subjected to differing types of dynamic loadings (electrohydraulic and pendulum impact devices, free-fall drops). FINDINGS: Spine injuries have shown an increasing trend over the years, explosive devices are one of the primary causal agents and trauma is attributed to vertical loads. Injuries, mechanisms and tolerances are discussed under these loads. Probability-based injury risk curves are included based on loading rate, direction and age. INTERPRETATION: A unique advantage of human cadaver tests is the ability to obtain fundamental data to delineate injury biomechanics and establish human tolerance and injury criteria. Definitions of tolerances of the spine under vertical loads based on injuries have implications in clinical and biomechanical applications. Primary outputs such as forces and moments can be used to derive secondary variables such as the neck injury criterion. Implications are discussed for designing anthropomorphic test devices that may be used to predict injuries in underbody blast environments and improve the safety of military personnel.
BACKGROUND: Whereas considerable literature exists on the wounding mechanics of high velocity projectiles in the military domain, there is a paucity of such data from projectiles routinely encountered in the civilian population in the United States. This study was undertaken to develop a methodology and to determine the dynamics of penetrating trauma secondary to low velocity projectiles (200-300 m/sec). To demonstrate the feasibility of the methodology and the experimental protocol, two markedly different projectiles were chosen in the study. METHODS: Two projectiles were discharged into a human tissue simulant; one projectile was smooth and the other was of the expansion type. High-speed video photographic analysis and synchronized trigger techniques were used to describe the path of the projectile during its travel within the simulant. The temporal transient and residual profiles demonstrating the "wound involvement" were computed. RESULTS: Results indicated a stark contrast between the two cases. There was a ratio of approximately three-to-one in the maximum wound involvement due to penetration. Transient wave oscillations during penetration and perforation of the projectile from the tissue simulant demonstrated significant differences in amplitudes and time durations. In addition, the residual wound involvement profiles indicated differences in the injury potential. CONCLUSIONS: This study has provided an experimental methodology to delineate the temporal dynamic behavior of penetrating projectiles. To fully quantify and differentiate the dynamic differences in the temporal behaviors of the numerous available projectiles (with various combinations in design, type of equipment, and discharge), further research in this area is clearly necessary. The present protocol lends itself to be used to systematically analyze all these behaviors. Quantified data may assist clinical personnel in the management of penetrating trauma.