Displaying 1 - 15 of 15
The authors examined the hypothesis that rhesus monkeys with extreme right frontal electroencephalographic activity would have higher cortisol levels and would be more fearful compared with monkeys with extreme left frontal activity. The authors first showed that individual differences in asymmetric frontal electrical activity are a stable characteristic. Next, the authors demonstrated that relative right asymmetric frontal activity and cortisol levels are correlated in animals 1 year of age. Additionally, extreme right frontal animals had elevated cortisol concentrations and more intense defensive responses. At 3 years of age, extreme right frontal animals continued to have elevated cortisol concentrations. These findings demonstrate important relations among extreme asymmetric frontal electrical activity, cortisol levels, and trait-like fear-related behaviors in young rhesus monkeys.
Zotero Collections:
BACKGROUND: Asymmetric patterns of frontal brain activity and brain corticotropin-releasing hormone (CRH) systems have both been separately implicated in the processing of normal and abnormal emotional responses. Previous studies in rhesus monkeys demonstrated that individuals with extreme right frontal asymmetric brain electrical activity have high levels of trait-like fearful behavior and increased plasma cortisol concentrations.
METHODS: In this study we assessed cerebrospinal fluid (CSF) CRH concentrations in monkeys with extreme left and extreme right frontal brain electrical activity. CSF was repeatedly collected at 4, 8, 14, 40, and 52 months of age.
RESULTS: Monkeys with extreme right frontal brain activity had increased CSF CRH concentrations at all ages measured. In addition, individual differences in CSF CRH concentrations were stable from 4 to 52 months of age.
CONCLUSIONS: These findings suggest that, in primates, the fearful endophenotype is characterized by increased fearful behavior, a specific pattern of frontal electrical activity, increased pituitary-adrenal activity, and increased activity of brain CRH systems. Data from other preclinical studies suggests that the increased brain CRH activity may underlie the behavioral and physiological characteristics of fearful endophenotype.
Zotero Collections:
The corticotrophin-releasing hormone (CRH) system integrates the stress response and is associated with stress-related psychopathology. Previous reports have identified interactions between childhood trauma and sequence variation in the CRH receptor 1 gene (CRHR1) that increase risk for affective disorders. However, the underlying mechanisms that connect variation in CRHR1 to psychopathology are unknown. To explore potential mechanisms, we used a validated rhesus macaque model to investigate association between genetic variation in CRHR1, anxious temperament (AT) and brain metabolic activity. In young rhesus monkeys, AT is analogous to the childhood risk phenotype that predicts the development of human anxiety and depressive disorders. Regional brain metabolism was assessed with (18)F-labeled fluoro-2-deoxyglucose (FDG) positron emission tomography in 236 young, normally reared macaques that were also characterized for AT. We show that single nucleotide polymorphisms (SNPs) affecting exon 6 of CRHR1 influence both AT and metabolic activity in the anterior hippocampus and amygdala, components of the neural circuit underlying AT. We also find evidence for association between SNPs in CRHR1 and metabolism in the intraparietal sulcus and precuneus. These translational data suggest that genetic variation in CRHR1 affects the risk for affective disorders by influencing the function of the neural circuit underlying AT and that differences in gene expression or the protein sequence involving exon 6 may be important. These results suggest that variation in CRHR1 may influence brain function before any childhood adversity and may be a diathesis for the interaction between CRHR1 genotypes and childhood trauma reported to affect human psychopathology.
Zotero Collections:
The authors present an overview of the neural bases of emotion. They underscore the role of the prefrontal cortex (PFC) and amygdala in 2 broad approach- and withdrawal-related emotion systems. Components and measures of affective style are identified. Emphasis is given to affective chronometry and a role for the PFC in this process is proposed. Plasticity in the central circuitry of emotion is considered, and implications of data showing experience-induced changes in the hippocampus for understanding psychopathology and stress-related symptoms are discussed. Two key forms of affective plasticity are described--context and regulation. A role for the hippocampus in context-dependent normal and dysfunctional emotional responding is proposed. Finally, implications of these data for understanding the impact on neural circuitry of interventions to promote positive affect and on mechanisms that govern health and disease are considered.
Zotero Collections:
Some individuals are endowed with a biology that renders them more reactive to novelty and potential threat. When extreme, this anxious temperament (AT) confers elevated risk for the development of anxiety, depression and substance abuse. These disorders are highly prevalent, debilitating and can be challenging to treat. The high-risk AT phenotype is expressed similarly in children and young monkeys and mechanistic work demonstrates that the central (Ce) nucleus of the amygdala is an important substrate. Although it is widely believed that the flow of information across the structural network connecting the Ce nucleus to other brain regions underlies primates' capacity for flexibly regulating anxiety, the functional architecture of this network has remained poorly understood. Here we used functional magnetic resonance imaging (fMRI) in anesthetized young monkeys and quietly resting children with anxiety disorders to identify an evolutionarily conserved pattern of functional connectivity relevant to early-life anxiety. Across primate species and levels of awareness, reduced functional connectivity between the dorsolateral prefrontal cortex, a region thought to play a central role in the control of cognition and emotion, and the Ce nucleus was associated with increased anxiety assessed outside the scanner. Importantly, high-resolution 18-fluorodeoxyglucose positron emission tomography imaging provided evidence that elevated Ce nucleus metabolism statistically mediates the association between prefrontal-amygdalar connectivity and elevated anxiety. These results provide new clues about the brain network underlying extreme early-life anxiety and set the stage for mechanistic work aimed at developing improved interventions for pediatric anxiety.
Zotero Collections:
<p>BACKGROUND: Functional magnetic resonance imaging (fMRI) techniques were used to identify the neural circuitry underlying emotional processing in control and depressed subjects. Depressed subjects were studied before and after treatment with venlafaxine. This new technique provides a method to noninvasively image regional brain function with unprecedented spatial and temporal resolution. METHOD: Echo-planar imaging was used to acquire whole brain images while subjects viewed positively and negatively valenced visual stimuli. Two control subjects and two depressed subjects who met DSM-IV criteria for major depression were scanned at baseline and 2 weeks later. Depressed subjects were treated with venlafaxine after the baseline scan. RESULTS: Preliminary results from this ongoing study revealed three interesting trends in the data. Both depressed patients demonstrated considerable symptomatic improvement at the time of the second scan. Across control and depressed subjects, the negative compared with the positive pictures elicited greater global activation. In both groups, activation induced by the negative pictures decreased from the baseline scan to the 2-week scan. This decrease in activation was also present in the control subjects when they were exposed to the positive pictures. In contrast, when the depressed subjects were presented with the positive pictures they showed no activation at baseline, whereas after 2 weeks of treatment an area of activation emerged in right secondary visual cortex. CONCLUSION: While preliminary, these results demonstrate the power of using fMRI to study emotional processes in normal and depressed subjects and to examine mechanisms of action of antidepressant drugs.</p>
Zotero Collections:
Freezing is an adaptive defensive behavior that is expressed in response to an imminent threat. In prior studies with rhesus monkeys, stable individual differences in animals' propensities to freeze have been demonstrated. To understand the factors associated with these individual differences, freezing behavior was examined in infant rhesus monkeys and their mothers, in conjunction with levels of the stress-related hormone cortisol. In both mothers and infants, basal cortisol levels were positively correlated with freezing duration. Additionally, the number of offspring a mother had was negatively correlated with her infant's cortisol level. These findings suggest a link between basal cortisol levels and an animal's propensity to freeze, as well as a mechanism by which maternal experience may affect infants' cortisol levels.
Zotero Collections:
Prior studies assessing the relation between negative affective traits and cortisol have yielded inconsistent results. Two studies assessed the relation between individual differences in repressive-defensiveness and basal salivary cortisol levels. Experiment 1 assessed midafternoon salivary cortisol levels in men classified as repressors, high-anxious, or low-anxious. In Experiment 2, more rigorous controls were applied as salivary cortisol levels in women and men were assessed at 3 times of day on 3 separate days. In both studies, as hypothesized, repressors and high-anxious participants demonstrated higher basal cortisol levels than low-anxious participants. These findings suggest that both heightened distress and the inhibition of distress may be independently linked to relative elevations in cortisol. Also discussed is the possible mediational role of individual differences in responsivity to, or mobilization for, uncertainty or change.
Zotero Collections:
A growing body of literature has documented the differential role of the frontal regions of the two cerebral hemispheres in certain positive and negative affective processes. This corpus of evidence has led to the hypothesis of a possible differential effect of diazepam on asymmetry of frontal activation. To examine this question, nine infant rhesus monkeys were tested on two occasions during which brain electrical activity was recorded from left and right frontal and parietal scalp regions. During one session, recordings were obtained under a baseline restraint condition and then after an injection of diazepam (1 mg/kg). In the other session, following the same baseline restraint condition, a vehicle injection was given. In response to diazepam, the animals showed an asymmetrical decrease in power in the 4-8 Hz frequency band, which was most pronounced in the left frontal region. No change in electroencephalogram (EEG) activity was observed in response to vehicle. Asymmetry in parietal EEG activity was also unchanged by diazepam. Diazepam also produced overall reductions in power across different frequency bands in both frontal and parietal regions. Good test-retest stability of EEG measures of activation asymmetry was also found between the two testing sessions separated by three months. The possible proximal cause of the asymmetrical change in frontal brain electrical activity in response to diazepam, as well as the implications of these findings for understanding the mechanism of action of benzodiazepines are discussed.
Zotero Collections:
Based on previous findings in humans and rhesus monkeys suggesting that diazepam has asymmetrical effects on frontal lobe activity and other literature supporting a role for the benzodiazepine system in the mediation of individual differences in anxiety and fearfulness, the relation between asymmetrical changes in scalp-recorded regional brain activity in response to diazepam and the temperamental dimension of behavioral inhibition indexed by freezing time in 9 rhesus monkeys was examined. Animals showed greater relative left-sided frontal activation in response to diazepam compared with the preceding baseline. The magnitude of this shift was strongly correlated with an aggregate measure of freezing time (r = .82). The implications of these findings for understanding the role of regional differences in the benzodiazepine system in mediating individual differences in fearfulness are discussed.
Zotero Collections:
Aversive Pavlovian conditioning is an important tool used to investigate neurobiological mechanisms underlying the acquisition and expression of fear. Most studies have used nonprimate species employing electrical shock as the unconditioned stimulus (US). Although important advances have been made in understanding the neural substrates of conditioned fear, the extent to which these findings apply to primates is unclear. Research in primates has not progressed because of the lack of a conditioning paradigm that does not use shock. Therefore, we developed a method that uses a US consisting of a loud noise coupled with a stream of compressed air aimed at the face to aversively condition heart rate response in rhesus monkeys. With this US, rhesus monkeys rapidly acquire a conditioned bradycardia. The availability of an easy, reliable, and efficient method of aversive conditioning that does not require electrical shock, will facilitate studies investigating neurobiological mechanisms underlying the acquisition and expression of fear in primates.
Zotero Collections:
Temperamentally anxious individuals can be identified in childhood and are at risk to develop anxiety and depressive disorders. In addition, these individuals tend to have extreme asymmetric right prefrontal brain activity. Although common and clinically important, little is known about the pathophysiology of anxious temperament. Regardless, indirect evidence from rodent studies and difficult to interpret primate studies is used to support the hypothesis that the amygdala plays a central role. In previous studies using rhesus monkeys, we characterized an anxious temperament endophenotype that is associated with excessive anxiety and fear-related responses and increased electrical activity in right frontal brain regions. To examine the role of the amygdala in mediating this endophenotype and other fearful responses, we prepared monkeys with selective fiber sparing ibotenic acid lesions of the amygdala. Unconditioned trait-like anxiety-fear responses remained intact in monkeys with >95% bilateral amygdala destruction. In addition, the lesions did not affect EEG frontal asymmetry. However, acute unconditioned fear responses, such as those elicited by exposure to a snake and to an unfamiliar threatening conspecific were blunted in monkeys with >70% lesions. These findings demonstrate that the primate amygdala is involved in mediating some acute unconditioned fear responses but challenge the notion that the amygdala is the key structure underlying the dispositional behavioral and physiological characteristics of anxious temperament.
Zotero Collections:
This study, based on a sample of 172 children, examined the relation between average afternoon salivary cortisol levels measured at home at age 4.5 years and socioemotional adjustment a year and a half later, as reported by mothers, fathers, and teachers. Cortisol levels were hypothesized to be positively associated with withdrawal-type behaviors (e.g., internalizing, social wariness) and inversely related to approach-type behaviors, both negative and positive (e.g., externalizing, school engagement). Higher cortisol levels at age 4.5 predicted more internalizing behavior and social wariness as reported by teachers and mothers, although child gender moderated the relation between cortisol and mother report measures. An inverse relation was found between boys' cortisol levels and father report of externalizing behavior. A marginal inverse relation was found between child cortisol levels and teacher report of school engagement. Behavior assessed concurrently with cortisol collection did not account for the prospective relations observed,suggesting that cortisol adds uniquely to an understanding of behavioral development.
Zotero Collections:
The length polymorphism of the serotonin (5-HT) transporter gene promoter region has been implicated in altered 5-HT function and, in turn, neuropsychiatric illnesses, such as anxiety and depression. The nonhuman primate has been used as a model to study anxiety-related mechanisms in humans based upon similarities in behavior and the presence of a similar 5-HT transporter gene polymorphism. Stressful and threatening contexts in the nonhuman primate model have revealed 5-HT transporter genotype dependent differences in regional glucose metabolism. Using the rhesus monkey, we examined the extent to which serotonin transporter genotype is associated with 5-HT transporter binding in brain regions implicated in emotion-related pathology.
METHODS: Genotype data and high resolution PET scans were acquired in 29 rhesus (Macaca mulatta) monkeys. [C-11]DASB dynamic PET scans were acquired for 90 min in the anesthetized animals and images of distribution volume ratio (DVR) were created to serve as a metric of 5-HT transporter binding for group comparison based on a reference region method of analysis. Regional and voxelwise statistical analysis were performed with corrections for anatomical differences in gray matter probability, sex, age and radioligand mass.
RESULTS: There were no significant differences when comparing l/l homozygotes with s-carriers in the regions of the brain implicated in anxiety and mood related illnesses (amygdala, striatum, thalamus, raphe nuclei, temporal and prefrontal cortex). There was a significant sex difference in 5-HT transporter binding in all regions with females having 18%-28% higher DVR than males.
CONCLUSIONS: Because these findings are consistent with similar genotype findings in humans, this further strengthens the use of the rhesus model for studying anxiety-related neuropathologies.
Zotero Collections:
A variant allele in the promoter region of the serotonin transporter gene, SLC6A4, the s allele, is associated with increased vulnerability to develop anxiety-related traits and depression. Furthermore, functional magnetic resonance imaging (fMRI) studies reveal that s carriers have increased amygdala reactivity in response to aversive stimuli, which is thought to be an intermediate phenotype mediating the influences of the s allele on emotionality. We used high-resolution microPET [18F]fluoro-2-deoxy-D-glucose (FDG) scanning to assess regional brain metabolic activity in rhesus monkeys to further explore s allele-related intermediate phenotypes. Rhesus monkeys provide an excellent model to understand mechanisms underlying human anxiety, and FDG microPET allows for the assessment of brain activity associated with naturalistic environments outside the scanner. During FDG uptake, monkeys were exposed to different ethologically relevant stressful situations (relocation and threat) as well as to the less stressful familiar environment of their home cage. The s carriers displayed increased orbitofrontal cortex activity in response to both relocation and threat. However, during relocation they displayed increased amygdala reactivity and in response to threat they displayed increased reactivity of the bed nucleus of the stria terminalis. No increase in the activity of any of these regions occurred when the animals were administered FDG in their home cages. These findings demonstrate context-dependent intermediate phenotypes in s carriers that provide a framework for understanding the mechanisms underlying the vulnerabilities of s-allele carriers exposed to different types of stressors.
Zotero Collections: