Skip to main content Skip to search
Displaying 1 - 5 of 5
The biosynthesis of nanoparticles in bioreactors using microbial, plant, or animal cells is at the forefront of nanotechnology. We demonstrated for the first time that luminescent, water-soluble ZnO nanocrystals (bio-ZnO NCs) can be spontaneously biosynthesized in the mammalian blood circulation, not in cells, when animals were fed with Zn(CH3COO)2 aqueous solution. Serum albumin, rather than metallothioneins or glutathione, proved to play the pivotal role in biosynthesis. The bio-ZnO NCs were gradually taken up in the liver and degraded and excreted in the urine. Thus, we propose that in mammals such as rodents, bovinae, and humans, excess metal ions absorbed into the cardiovascular system via the intestine can be transformed into nanoparticles by binding to serum albumin, forming a "provisional metal-pool", to reduce the toxicity of free metal ions at high concentration and regulate metal homeostasis in the body. Furthermore, the bio-ZnO NCs, which showed favorable biocompatibility, were functionalized with the anticancer drug daunorubicin and effectively achieved controlled drug release mediated by intracellular glutathione in tumor xenograft mice.

It was estimated that about 428 species of genus Corydalis are distributed all worldwide, with about 298, especially 10 groups and 219 species being uniquely spread in China. The genus Corydalis have been widely employed as folk medicines in China, especially as traditional Tibetan medicines, for treatment of fever, hepatitis, edema, gastritis, cholecystitis, hypertension and other diseases. The phytochemical studies revealed that isoquinoline alkaloids are its major bioactive ingredients. The extensive biological researches suggested its pharmacological activities and clinic applications against cardiovascular diseases and central nervous system, antibacterial activities, analgesic effects, anti-inflammatory, anti-oxidation and anti-injury for hepatocyte, and so on. As an effort in promoting the research of pharmacodynamic ingredients, this article presents an overview focusing on the distribution, phytochemical and pharmacological results of Corydalis species that have been applied in traditional Tibetan medicinal, hopefully to provide a reference for the new Tibetan medicine development from Corydalis plant resource.

OBJECTIVE: In the present study, the antiviral effects of polyphylla saponin I isolated from Parispolyphylla on influenza A virus are investigated both in vitro and in vivo.METHODS: Column chromatography and reversed phase liquid chromatography separation technology were used to extract and purify polyphylla saponin I. The purity of polyphylla saponin I was assayed by high performance liquid chromatography. Methyl thiazolyl tetrazolium assay and analyses of cytopathic effects were performed to examine the antiviral activity of polyphylla saponin I upon MDCK cells infected with influenza A virus. Model mice were made by intranasal inoculation of influenza a virus. Mice infected with influenza A virus were orally administered polyphylla saponin I and oseltamivir twice a day for 5 days to study their antiviral efficacy in vivo. RESULTS: Polyphylla saponin I had no cytotoxicity on MDCK cells at the concentration of 50 μg/mL. Polyphylla saponin I (6.25, 12.5, 25 and 50 μg/mL) and oseltamivir (40 μg/mL) had remarkable inactivation effects on influenza A virus, prevention effects on influenza A virus adsorption on MDCK cells, and inhibitory effects on the reproduction of influenza A virus in MDCK cells. In addition, polyphylla saponin I (5 and 10 mg/kg), and oseltamivir (3 mg/kg) significantly reduced viral hemagglutination titer, improved the pathologic histology of lung tissues, and decreased the mortality of mice infected with influenza A virus. Polyphylla saponin I (5 and 10 mg/kg) prolonged the survival time of mice from 8.5±0.3 days to 13.2±0.5 days, with the prolonged life rates being 49.4% and 55.3%, respectively. CONCLUSION: Polyphylla saponin I has antiviral activity on influenza A virus both in vitro and in vivo.

OBJECTIVE: In the present study, the antiviral effects of polyphylla saponin I isolated from Parispolyphylla on influenza A virus are investigated both in vitro and in vivo. METHODS: Column chromatography and reversed phase liquid chromatography separation technology were used to extract and purify polyphylla saponin I. The purity of polyphylla saponin I was assayed by high performance liquid chromatography. Methyl thiazolyl tetrazolium assay and analyses of cytopathic effects were performed to examine the antiviral activity of polyphylla saponin I upon MDCK cells infected with influenza A virus. Model mice were made by intranasal inoculation of influenza a virus. Mice infected with influenza A virus were orally administered polyphylla saponin I and oseltamivir twice a day for 5 days to study their antiviral efficacy in vivo. RESULTS: Polyphylla saponin I had no cytotoxicity on MDCK cells at the concentration of 50 μg/mL. Polyphylla saponin I (6.25, 12.5, 25 and 50 μg/mL) and oseltamivir (40 μg/mL) had remarkable inactivation effects on influenza A virus, prevention effects on influenza A virus adsorption on MDCK cells, and inhibitory effects on the reproduction of influenza A virus in MDCK cells. In addition, polyphylla saponin I (5 and 10 mg/kg), and oseltamivir (3 mg/kg) significantly reduced viral hemagglutination titer, improved the pathologic histology of lung tissues, and decreased the mortality of mice infected with influenza A virus. Polyphylla saponin I (5 and 10 mg/kg) prolonged the survival time of mice from 8.5±0.3 days to 13.2±0.5 days, with the prolonged life rates being 49.4% and 55.3%, respectively. CONCLUSION: Polyphylla saponin I has antiviral activity on influenza A virus both in vitro and in vivo.

In the present study, structural characterization and antioxidant activity of a fraction (AAP-2A) of polysaccharides from angelica and astragalus (AAP) were investigated. Characteriztion assay showed that AAP-2A had molecular weight (Mw), root-mean square (RMS) radius and polydispersity index (Mw/Mn) of 2.252 × 10(3)kDa, 28.4 nm and 1.038, respectively. There were infrared characteristic absorption peaks of polysaccharides in FT-IR spectroscopy. AAP-2A was composed of rhamnose (Rha), galactose (Gal), arabinose (Ara) and glucose (Glc) with a molar ratio of 1:2.13:3.22:6.18 in GC analysis. Methylation analysis combined with NMR spectroscopic analysis demonstrated that a preliminary structure of AAP-2A was proposed as follows: 1,3-linked Rhap, 1,3-linked Galp, 1,3-linked Araf, 1,5-linked Araf, 1,3,5-linked Araf, 1,4-linked Glcp and 1,4,6-linked Glcp interspersed with terminal Glcp. AAP-2A exhibited a surface with a sheet-like appearance in scanning electron microscope and stronger antioxidant capacity compared with AAP.