Skip to main content Skip to search
Displaying 1 - 7 of 7
OBJECTIVE: The anterior cingulate cortex has been implicated in depression. Results are best interpreted by considering anatomic and cytoarchitectonic subdivisions. Evidence suggests depression is characterized by hypoactivity in the dorsal anterior cingulate, whereas hyperactivity in the rostral anterior cingulate is associated with good response to treatment. The authors tested the hypothesis that activity in the rostral anterior cingulate during the depressed state has prognostic value for the degree of eventual response to treatment. Whereas prior studies used hemodynamic imaging, this investigation used EEG. METHOD: The authors recorded 28-channel EEG data for 18 unmedicated patients with major depression and 18 matched comparison subjects. Clinical outcome was assessed after nortriptyline treatment. Of the 18 depressed patients, 16 were considered responders 4-6 months after initial assessment. A median split was used to classify response, and the pretreatment EEG data of patients showing better (N=9) and worse (N=9) responses were analyzed with low-resolution electromagnetic tomography, a new method to compute three-dimensional cortical current density for given EEG frequency bands according to a Talairach brain atlas. RESULTS: The patients with better responses showed hyperactivity (higher theta activity) in the rostral anterior cingulate (Brodmann's area 24/32). Follow-up analyses demonstrated the specificity of this finding, which was not confounded by age or pretreatment depression severity. CONCLUSIONS: These results, based on electrophysiological imaging, not only support hemodynamic findings implicating activation of the anterior cingulate as a predictor of response in depression, but they also suggest that differential activity in the rostral anterior cingulate is associated with gradations of response.
Zotero Collections:

Major depression is a heterogeneous condition, and the search for neural correlates specific to clinically defined subtypes has been inconclusive. Theoretical considerations implicate frontostriatal, particularly subgenual prefrontal cortex (PFC), dysfunction in the pathophysiology of melancholia--a subtype of depression characterized by anhedonia--but no empirical evidence has been found yet for such a link. To test the hypothesis that melancholic, but not nonmelancholic depression, is associated with the subgenual PFC impairment, concurrent measurement of brain electrical (electroencephalogram, EEG) and metabolic (positron emission tomography, PET) activity were obtained in 38 unmedicated subjects with DSM-IV major depressive disorder (20 melancholic, 18 nonmelancholic subjects), and 18 comparison subjects. EEG data were analyzed with a tomographic source localization method that computed the cortical three-dimensional distribution of current density for standard frequency bands, allowing voxelwise correlations between the EEG and PET data. Voxel-based morphometry analyses of structural magnetic resonance imaging (MRI) data were performed to assess potential structural abnormalities in melancholia. Melancholia was associated with reduced activity in the subgenual PFC (Brodmann area 25), manifested by increased inhibitory delta activity (1.5-6.0 Hz) and decreased glucose metabolism, which themselves were inversely correlated. Following antidepressant treatment, depressed subjects with the largest reductions in depression severity showed the lowest post-treatment subgenual PFC delta activity. Analyses of structural MRI revealed no group differences in the subgenual PFC, but in melancholic subjects, a negative correlation between gray matter density and age emerged. Based on preclinical evidence, we suggest that subgenual PFC dysfunction in melancholia may be associated with blunted hedonic response and exaggerated stress responsiveness.
Zotero Collections:

BACKGROUND: Although it has been hypothesized that glucocorticoid hypersecretion in depressed patients leads to neuronal atrophy in the hippocampus, magnetic resonance imaging (MRI) -based morphometry studies of the hippocampus to date have produced mixed results. METHODS: In our MRI study, hippocampal volumes were measured in 25 depressed patients (13 with melancholia and 12 without melancholia) and 15 control subjects. RESULTS: No significant differences in hippocampus volumes were found between any of the subject groups, although within subjects right hippocampal volumes were found to be significantly larger than left hippocampal volumes. Additionally, right and total (left + right) hippocampal volumes in control and depressed subjects were found to be positively correlated with trait anxiety as measured by the state/trait anxiety inventory. CONCLUSIONS: Because our subject group is younger than those in studies reporting hippocampal atrophy, we conclude that longitudinal studies will be necessary for investigation of the lifelong course of hippocampal volumetry.
Zotero Collections:

The role of the amygdala in major depression was investigated. Resting regional cerebral metabolic rate (rCMRglu) was measured with [18F]fluorodeoxyglucose positron emission tomography (PET) in two samples of subjects using two different PET cameras. The samples consisted of 10 and 17 medication-free depressives and 11 and 13 controls, respectively. Using coregistration of PET and magnetic resonance images, regions were individually delineated for the amygdala and thalamus, the latter of which was used as a control region. Within the depressed groups, right amygdalar rCMRglu was positively correlated with negative affect. Thalamic rCMRglu was not related to negative affect, and amygdalar rCMRglu accounted for a significant portion of variance in depressives' negative affect scores over and above the contribution of thalamic rCMRglu.
Zotero Collections:

Electroencephalogram (EEG) alpha power has been demonstrated to be inversely related to mental activity and has subsequently been used as an indirect measure of brain activation. The thalamus has been proposed as an important site for modulation of rhythmic alpha activity. Studies in animals have suggested that cortical alpha rhythms are correlated with alpha rhythms in the thalamus. However, little empirical evidence exists for this relation in humans. In the current study, resting EEG and a fluorodeoxyglucose positron emission tomography scan were measured during the same experimental session. Over a 30-min period, average EEG alpha power across 28 electrodes from 27 participants was robustly inversely correlated with glucose metabolic activity in the thalamus. These data provide the first evidence for a relation between alpha EEG power and thalamic activity in humans.
Zotero Collections:

Test-retest reliability of resting regional cerebral metabolic rate of glucose (rCMR) was examined in selected subcortical structures: the amygdala, hippocampus, thalamus, and anterior caudate nucleus. Findings from previous studies examining reliability of rCMR suggest that rCMR in small subcortical structures may be more variable than in larger cortical regions. We chose to study these subcortical regions because of their particular interest to our laboratory in its investigations of the neurocircuitry of emotion and depression. Twelve normal subjects (seven female, mean age = 32.42 years, range 21-48 years) underwent two FDG-PET scans separated by approximately 6 months (mean = 25 weeks, range 17-35 weeks). A region-of-interest approach with PET-MRI coregistration was used for analysis of rCMR reliability. Good test-retest reliability was found in the left amygdala, right and left hippocampus, right and left thalamus, and right and left anterior caudate nucleus. However, rCMR in the right amygdala did not show good test-retest reliability. The implications of these data and their import for studies that include a repeat-test design are considered.
Zotero Collections:

BACKGROUND: EEG alpha power has been demonstrated to be inversely related to mental activity and has subsequently been used as an indirect measure of brain activation. The hypothesis that the thalamus serves as a neuronal oscillator of alpha rhythms has been supported by studies in animals, but only minimally by studies in humans. METHODS: In the current study, PET-derived measures of regional glucose metabolism, EEG, and structural MRI were obtained from each participant to assess the relation between thalamic metabolic activity and alpha power in depressed patients and healthy controls. The thalamus was identified and drawn on each subject's MRI. The MRI was then co-registered to the corresponding PET scan and metabolic activity from the thalamus extracted. Thalamic activity was then correlated with a 30-min aggregated average of alpha EEG power. RESULTS: Robust inverse correlations were observed in the control data, indicating that greater thalamic metabolism is correlated with decreased alpha power. No relation was found in the depressed patient data. CONCLUSIONS: The results are discussed in the context of a possible abnormality in thalamocortical circuitry associated with depression.
Zotero Collections: