Skip to main content Skip to search
Displaying 1 - 7 of 7
A rapid, sensitive, and selective precolumn derivatization method for the simultaneous determination of eight thiophenols using 3-(2-bromoacetamido)-<i>N</i>-(9-ethyl-9<i>H</i>)-carbazol as a labeling reagent by high-performance liquid chromatography with fluorescence detection has been developed. The labeling reagent reacted with thiophenols at 50°C for 50 min in aqueous acetonitrile in the presence of borate buffer (0.10 mol/L, pH 11.2) to give high yields of thiophenol derivatives. The derivatives were identified by online postcolumn mass spectrometry. The collision-induced dissociation spectra for thiophenol derivatives gave the corresponding specific fragment ions at <i>m/z</i> 251.3, 223.3, 210.9, 195.8, and 181.9. At the same time, derivatives exhibited intense fluorescence with an excitation maximum at λ<sub>ex</sub> = 276 nm and an emission maximum at λ<sub>em</sub> = 385 nm. Excellent linear responses were observed for all analytes over the range of 0.033-6.66 μmol/L with correlation coefficients of more than 0.9997. Detection limits were in the range of 0.94-5.77 μg/L with relative standard deviations of less than 4.54%. The feasibility of derivatization allowed the development of a rapid and highly sensitive method for the quantitative analysis of trace levels of thiophenols from some rubber products. The average recoveries (<i>n</i> = 3) were in the range of 87.21-101.12%.

A novel hyphenated method based on ultrasound-assisted dispersive liquid-liquid microextraction coupled to precolumn derivatization has been established for the simultaneous determination of bisphenol A, 4-octylphenol, and 4-nonylphenol by high-performance liquid chromatography with fluorescence detection. Different parameters that influence microextraction and derivatization have been optimized. The quantitative linear range of analytes is 5.0-400.0 ng/L, and the correlation coefficients are more than 0.9998. Limits of detection for soft drinks and dairy products have been obtained in the range of 0.5-1.2 ng/kg and 0.01-0.04 μg/kg, respectively. Relative standard deviations of intra- and inter-day precision for retention time and peak area are in the range of 0.47-2.31 and 2.76-8.79%, respectively. Accuracy is satisfactory in the range of 81.5-118.7%. Relative standard deviations of repeatability are in the range of 0.35-1.43 and 2.36-4.75% for retention time and peak area, respectively. Enrichment factors for bisphenol A, 4-octylphenol, and 4-nonylphenol are 170.5, 240.3, and 283.2, respectively. The results of recovery and matrix effect are in the range of 82.7-114.9 and 92.0-109.0%, respectively. The proposed method has been applied to the determination of bisphenol A, 4-octylphenol, and 4-nonylphenol in soft drinks and dairy products with much higher sensitivity than many other methods.

A new fluorescent labeling reagent, benzimidazo[2,1-<i>b</i>]quinazolin-12(6<i>H</i>)-one-5-ethyl-<i>p</i>-toluenesulfonate (BQETS) was designed and synthesized, and it was successfully applied to the determination of fatty acids with liquid chromatography. BQETS can easily and quickly label fatty acids within 20 min at 90 °C in dimethylformamide with K<sub>2</sub>CO<sub>3</sub> as catalyst. The derivatives exhibit high stability and strong fluorescence with excitation and emission wavelengths of 247 and 401 nm, respectively. The 24 derivatives of fatty acids were completely separated by gradient elution on a Hypersil GOLD C18 column. Excellent linear responses for all fatty acids were observed with correlation coefficients of >0.9991. The method also showed good sensitivity and precision, with limits of detection in the 0.0024-0.0206 μg g<sup>−1</sup> range and relative standard deviations ≤9.6 %. This is the first time that BQETS fluorescent probe and its applications for the determination of fatty acids have been reported. Moreover, this is the first report on the comparison of free fatty acids composition in the above-ground part of <i>Coriandrum sativum</i> L. from different habitats in China.

A novel hyphenated technique based on ultrasonic-assisted dispersive liquid-liquid microextraction (UA-DLLME) coupled with derivatization has been established for the determination of brassinolide (BL, a representative of brassinosteroids) by HPLC fluorescence detection. 9-Phenanthreneboronic acid is used as labeling reagent of BL. UA-DLLME parameters containing type and volume of extraction and disperser solvent, pH and ultrasonication time are optimized. Derivatization parameters are optimized included amount of 9-phenanthreneboronic acid, volume ratio of pyridine, derivatization time and temperature. Under optimal conditions, quantitative linear range of BL is 50-1,000 ng L<sup>−1</sup> and excellent linear response is observed with correlation coefficient of 0.9996. Limit of detection and limit of quantification are calculated as 8.0 and 25.0 ng L<sup>−1</sup>, respectively. RSDs of retention time and peak area are in the range of 0.68-0.97 % and 4.61-6.54 % for intra-day precision, 1.32-1.94 % and 7.28-9.75 % for inter-day precision, respectively. Accuracy is satisfactory in the range of 82.3-125.1 %. RSDs’ values of repeatability are in the range of 0.82-1.79 and 3.95-8.53 % for retention time and peak area, respectively. Enrichment factor for BL is 189. The results of recovery and matrix effect are in the range of 82.0-108.6 and 90.0-115.3 %, respectively. The proposed method has been applied for the determination of BL in <i>Arabidopsis thaliana</i>, <i>Daucus carota</i> and <i>Brassica campestris</i> L. leaves with much higher sensitivity than many other methods.

A novel high-performance liquid chromatography-fluorescence analysis in combination with in situ degradation-derivatization (ISD-D) technique was developed for simultaneous determination of seven organophosphorus thioester pesticides (OPTPs) in tea. The ISD-D technique was based on degradation of OPTPs by a nucleophilic substitution reaction between phenylbutane-1,2,3-trione-2-oxime and OPTPs, which can give thiol degradation products (DPs). The thiol DPs obtained were derivatized with the novel derivatization reagent N-(4-(carbazole-9-yl)-phenyl)-N-maleimide (NCPM) in a syringe. Attractively, NCPM itself did not fluoresce, whereas the derivatives of the thiol DPs fluoresced intensely, with excitation and emission maxima at 290 nm and 368 nm, respectively, which extraordinary reduced the background interference and increased the detection sensitivity for thiol DPs. Excellent linearity (R2 > 0.995) for all OPTPs was achieved, with limits of detection and limits of quantitation ranging from 0.23 to 0.45 μg/kg and from 0.75 to 1.43 μg/kg, respectively. Satisfactory recoveries ranging from 90.5% to 96.0% were obtained for all OPTPs. The ISD-D technique provided a novel and sensitive strategy for quantitation of trace amounts of OPTPs in real samples. Graphical abstract ᅟ.

Recent researches shows that amino acids (AA) are not only cell signaling molecules but are also regulators of gene expression and the protein phosphorylation cascade. More precise analysis of AA composition is reckoned to be one of the most important applications in the biomedical and pharmaceutical fields. In this paper, we develop a sample, sensitive and mild method using 2-[2-(7H-dibenzo[a,g]carbazol-7-yl)-ethoxy]ethyl chloroformate (DBCEC) as A labeling reagent for AA determination by high-performance liquid chromatography (HPLC) with fluorescence detection (FLD) and identification with mass spectroscopy. The maximum excitation and emission wavelengths for DBCEC-AA derivatives were 300 and 395 nm, respectively. This method, in conjunction with a gradient elution, offered a baseline resolution of 20 AA on a reversed-phase Hypersil BDS C<sub>18</sub> column. LC separation for the derivatized AA showed good reproducibility, and all AA were found to give excellent linear responses with correlation coefficients > 0.9993. The calculated detection limits with a 25.0 fmol injection of each AA (at a signal-to-noise ratio of 3:1) ranged from 2.62 to 22.6 fmol. This method was applied to determine the AA composition in <i>Saussurea involucrate</i> and <i>Artemisia capillaris</i> Thunb. Meanwhile, this method exhibits a powerful potential for trace analysis of AA from biomedicine, foodstuff and other complex samples. Copyright © 2010 John Wiley & Sons, Ltd.