Displaying 1 - 3 of 3
"RenqingMangjue" pill (RMP), as an effective prescription of Traditional Tibetan Medicine (TTM), has been widely used in treating digestive diseases and ulcerative colitis for over a thousand years. In certain classical Tibetan Medicine, heavy metal may add as an active ingredient, but it may cause contamination unintentionally in some cases. Therefore, the toxicity and adverse effects of TTM became to draw public attention. In this study, 48 male Wistar rats were orally administrated with different dosages of RMP once a day for 15 consecutive days, then half of the rats were euthanized on the 15th day and the remaining were euthanized on the 30th day. Plasma, kidney and liver samples were acquired to 1H NMR metabolomics analysis. Histopathology and ICP-MS were applied to support the metabolomics findings. The metabolic signature of plasma from RMP-administrated rats exhibited increasing levels of glucose, betaine, and creatine, together with decreasing levels of lipids, 3-hydroxybutate, pyruvate, citrate, valine, leucine, isoleucine, glutamate, and glutamine. The metabolomics analysis results of liver showed that after RMP administration, the concentrations of valine, leucine, proline, tyrosine, and tryptophan elevated, while glucose, sarcosine and 3-hydroxybutyrate decreased. The levels of metabolites in kidney, such as, leucine, valine, isoleucine and tyrosine, were increased, while taurine, glutamate, and glutamine decreased. The study provides several potential biomarkers for the toxicity mechanism research of RMP and shows that RMP may cause injury in kidney and liver and disturbance of several pathways, such as energy metabolism, oxidative stress, glucose and amino acids metabolism.
This study sought to establish a more reliable method of identifying the "monarch" or principal drug Radix inulae and its active component alantolactone (AL) in the Tibetan medicine Manuxitang. Radix inulae and AL in Manuxitang were effectively identified by thin layer chromatography (TLC). AL was quantitatively determined using gas chromatography in the range of 0.1-1.0 mug/mL (r = 0.9998). The precision was 1.20% (n = 6) with an average RSD of 1.74%. Recovery was in the range of 93.5-98.5% with RSD value of 1.85%. The methods established were simple, accurate, and specific and could be used for quality control of Manuxitang.