Skip to main content Skip to search
Displaying 26 - 38 of 38


  • Page
  • of 2
• Gelatin was extracted from the Yak (<b>bos grunniens</b>) skin. • The different molecular weight distribution (MWD) Yak skin gelatin was extracted with pepsin by controlling the enzymolysis time. • The broad MWD Yak skin gelatin has higher imino acids contents and lower foamability and emulsibility compared with the narrow MWD gelatin. • The Yak skin gelatin has good thermotolerance.<br>Different molecular weight distribution (MWD) gelatin was extracted from Yak skin after enzymatic pretreatments and their physicochemical and functional properties (SDS-PAGE, UV-vis absorption spectra, DSC, FT-IR, Amino acid analysis, AFM, emulsibility and foamability) were analyzed. The gelatin was extracted by pepsin and got different MWD of Yak skin gelatin by controlling the enzymolysis time. The SDS-PAGE showed the MWD of the Yak skin gelatin. The UV-vis absorption turned out that the broad MWD of Yak skin gelatin had a higher maximum absorption peaks. The FT-IR and AFM indicated that the gelatin structures and microstructures changed with the change of the MWD. The broad MWD of the Yak skin gelatin had a higher denaturation temperature (TD), and it was higher than most of the other mammals and marine biological gelatin. The broad MWD gelatin also had higher imino acids (proline and hydroxyproline) contents and lower foamability and emulsibility compared to the narrow MWD gelatin. These findings, obtained for the first time for Yak skin gelatin, showed that it has great potential for application as an alternative to commercial gelatin due to its good thermotolerance, particularly in the applications of the biological materials, stabilizer of thermo-tolerant and so on.

OBJECTIVE: To establish the method of quality control for traditional Tibetan Medicine Zsuotai.METHODS: Collecting the samples of Tsuotai from Qinghai, Tibet, Sichuan, and Gansu province, to detect Hg2+ by Zsuotai reacted with HCl-HNO3 (3:1), and to determine the quantity of HgS in Zsuotai by sulfocyanate volumetric method. RESULTS: The method for the determination of HgS in Zsuotai was in good reproducibility (RSD = 0.68%). The calibration curve was linear (r = 0.9999) within -0.0002 - 0.2123 g of mercuric sulfide. The recovery was 100.94% (RSD = 0.66%). CONCLUSIONS: This method is convenient and accurate, so it can be used to establish quality control of the medicinal material.

ETHNOPHARMOCOLOGICAL RELEVANCE: Herbo-metallic preparations have a long history in the treatment of diseases, and are still used today for refractory diseases, as adjuncts to standard therapy, or for economic reasons in developing countries.AIM OF THE REVIEW: This review uses cinnabar (HgS) and realgar (As4S4) as mineral examples to discuss their occurrence, therapeutic use, pharmacology, toxicity in traditional medicine mixtures, and research perspectives. MATERIALS AND METHODS: A literature search on cinnabar and realgar from PubMed, Chinese pharmacopeia, Google and other sources was carried out. Traditional medicines containing both cinnabar and realgar (An-Gong-Niu-Huang Wan, Hua-Feng-Dan); mainly cinnabar (Zhu-Sha-An-Shen Wan; Zuotai and Dangzuo), and mainly realgar (Huang-Dai Pian; Liu-Shen Wan; Niu-Huang-Jie-Du) are discussed. RESULTS: Both cinnabar and realgar used in traditional medicines are subjected to special preparation procedures to remove impurities. Metals in these traditional medicines are in the sulfide forms which are different from environmental mercurials (HgCl2, MeHg) or arsenicals (NaAsO2, NaH2AsO4). Cinnabar and/or realgar are seldom used alone, but rather as mixtures with herbs and/or animal products in traditional medicines. Advanced technologies are now used to characterize these preparations. The bioaccessibility, absorption, distribution, metabolism and elimination of these herbo-metallic preparations are different from environmental metals. The rationale of including metals in traditional remedies and their interactions with drugs need to be justified. At higher therapeutic doses, balance of the benefits and risks is critical. Surveillance of patients using these herbo-metallic preparations is desired. CONCLUSION: Chemical forms of mercury and arsenic are a major determinant of their disposition, efficacy and toxicity, and the use of total Hg and As alone for risk assessment of metals in traditional medicines is insufficient.

• A simultaneous microwave/ultrasonic-assisted enzymatic extraction method was established for the first time. • Simultaneous microwave/ultrasonic-assisted enzymatic process can improve antioxidant capacity of juice by-product extract. • Simultaneous microwave/ultrasonic-assisted enzymatic process can increase the extraction efficiency of antioxidant ingredients. • <b>Nitraria tangutorun</b> Bobr. juice by-products extract exhibited excellent cell protection effect from oxidative injury.<br>By-products originating from food processing are a considerable disposal problem for the food industry. Because of the absence of specifically effective processing technology, huge quantities of by-products are often abandoned as rubbish and prone to microbial spoilage. Given this, a simultaneous microwave/ultrasonic assisted enzymatic extraction (SMU-AEE) method was established for the first time, and performed for antioxidant ingredients extraction from <b>Nitraria tangutorum</b> juice by-products (NJB) in the present study. Its experimental conditions were optimized by single factor test and response surface methodology (RSM), and gave the corresponding response values for antioxidant capacity of NJB extract (NJBE) of 219.73 ± 7.03 mg TE/g, which was 27.62%-190.23% higher than those obtained by traditional extraction methods. Chemical composition assay suggested that the increasing of antioxidant capacity of NJBE by SMU-AEE was because of the improvement of extraction efficiency of antioxidant ingredients from NJB, including phenols, flavonoids and anthocyanins. Furthermore, oxidative injury protection ability assay showed that NJBE was good at protecting cells from UVB-oxidative phototoxicity and doxorubicin-oxidative cardiotoxicity, and its protecting ability surpasses or approaches to that of grape seed extract (GSE, the positive control drug), indicating its good potential to be a natural antioxidant in food and pharmaceutical industries.

Four common traditional tibetan medicine prescription preparations "Anzhijinghuasan, Dangzuo, Renqingchangjue and Rannasangpei" in tibetan areas were selected as study objects in the present study. The purpose was to try to establish a kind of wet digestion and flow injection-hydride generation-atomic absorption spectrometry (FI-HAAS) associated analysis method for the content determinations of lead and arsenic in traditional tibetan medicine under optimized digestion and measurement conditions and determine their contents accurately. Under these optimum operating conditions, experimental results were as follows. The detection limits for lead and arsenic were 0.067 and 0.012 µg · mL(-1) respectively. The quantification limits for lead and arsenic were 0.22 and 0.041 µg · mL(-1) respectively. The linear ranges for lead and arsenic were 25-1,600 ng · mL(-1) (r = 0.9995) and 12.5-800 ng · mL(-1) (r = 0.9994) respectively. The degrees of precision(RSD) for lead and arsenic were 2.0% and 3.2% respectively. The recovery rates for lead and arsenic were 98.00%-99.98% and 96.67%-99.87% respectively. The content determination results of lead and arsenic in four traditional tibetan medicine prescription preparations were as fol- lows. The contents of lead and arsenic in Anzhijinghuasan are 0.63-0.67 µg · g(-1) and 0.32-0.33 µg · g(-1) in Anzhijinghua- san, 42.92-43.36 µg · g(-1) and 24.67-25.87 µg · g(-1) in Dangzuo, 1,611. 39-1,631.36 µg · g(-1) and 926.76-956.52 µg- g(-1) in Renqing Changjue, and 1,102.28-1,119.127 µg-g(-1) and 509.96-516.87 µg · g(-1) in Rannasangpei, respectively. This study established a method for content determination of lead and arsenic in traditional tibetan medicine, and determined the content levels of lead and arsenic in four tibetan medicine-prescription preparations accurately. In addition, these results also provide the basis for the safe and effective use of those medicines in clinic.

OBJECTIVE: To study the heat processing technics of Nanhanshuishi.METHOD: To find the best processing technic, the single factor experiments and orthogonal experiments were designed basing on the processing technics summarized by consulting documents, scriptures and investigating some Tibetan hospitals, meanwhile, the content of Ca, Fe, Mn, Zn, and Cu in the processed Nanhanshuishi in single factor experiments and orthogonal experiments were detected. RESULT: The best processing technic of Nanhanshuishi was as follows: Nanhanshuishi was crashed to 10-20 mm in diameter, the ratio of the weight of Aconiti Kusnezoffii Radix and potassium nitrate was 1: 2, and the boiling time was 3 h. CONCLUSION: The work in this article provided a basic processing technic data for clarifying the mechanism of processing and establishing the perfect processing technics of Nanhanshuishi.

Zuotai (gTso thal) is a typical representative of Tibetan medicines containing heavy metals, but there is still lack of modem safety evaluation data so far. In this study, acute toxicity test, sub-acute toxicity test, one-time administration mercury distribution experiment, long-term mercury accumulative toxicity experiment and preliminary study on clinical safety of Compound Dangzuo were conducted in the hope of obtain the medicinal safety data of Zuotai. In the acute toxicity test, half of KM mice given the lethal dose of Zuotai were not died or poisoned, and LD50 was not found. The maximum tolerated dose of Zuotai was 80 g x kg(-1). In the subacute toxicity test, Zuotai could reduce ALT, AST, Crea levels in serums under low dose (13.34 mg x kg(-1) x d(-1)) and medium dose (53.36 mg x kg(-1) x d(-1)), with significant difference under low dose, and increase the levels of ALT, AST, MDA, Crea in serums under high dose (2 000 mg x kg(-1) x d(-1)); besides, the levels of BUN and GSH in serums reduced with the increase in dose of Zuotai, indicating a significant dose-effect relationship. In the one-time administration distribution experiment, the content of mercury in rat kidney, liver and lung increased after the one-time administration with Zuotai, with a significant dose-dependent relationship in kidney. In the long-term mercury accumulative toxicity experiment, KM mice were administered with equivalent doses of Zuotai for 4.5 months and then stopped drug administration for 1.5 months. Since the 2.5th month, they showed significant mercury accumulation in kidney, which gradually reduced after drug withdrawal, without significant change in mercury content in liver, spleen and brain and ALT, AST, TBIL, BUN and Crea in serum. At the 4.5th month after drug administration, KM mice showed slight structural changes in kidney, liver and spleen tissues, and gradually recovered to normal after drug withdrawal. Besides, no significant difference in weight gain was found between the Zuotai group and the control group. According to the findings of the clinical safety study of Dangzuo, after subjects administered Dangzuo under clinical dose for one month, their serum biochemical indicators, blood routine indicators and urine routine indicators showed no significant adverse change. This study proved that traditional Tibetan medicine Zuotai was slightly toxic, with a better safety in clinical combined administration and no adverse effects on bodies under the clinical dose and clinical medication cycle. However, long-term high-dose administration of Zuotai may have a certain effect on kidney.;

The objective of the present study is to research the herb of Swertia mussotii Franch and its different extracts by tristep infrared spectroscopy. The main constitute of Swertia mussotii Franch-gentiamarin, which is also the higher content constitute, was selected as the control components to analyze the infrared spectroscopy and second derivative infrared spectroscopy of different extracts of Swertia mussotii Franch, at the same time, the different concentration of ethanol extracts were also analyzed by two-dimensional correlation spectroscopy (2D-COS). The results indicated that the intensity of 1 611 and 1 075 cm(-1) of gentiamarin, which are its two main absorptions in the infrared spectra, has the positive correlation with the content change in different extracts. The infrared spectroscopy of extracts are similar if the polarity of extract solvents is close; with the decreases in solution polarity, the intensity of 2 853, 1 733, 1 464, 1 277 and 1 161 cm(-1) in infrared spectroscopy of different extracts is increased, the content of esters and the extraction percentage terpenoid compounds are also increased; the different concentration of ethanol extracts has obviously difference when they are analyzed by two-dimensional correlation spectroscopy (2D-COS). The positive correlation between the intensity of absorptions and the content of the gentiamarin indicates that the infrared spectroscopy can reflect the content change in constitute; the similar and the change trend of the different concentrations of ethanol extract infrared spectroscopy approve the scientificalness of decoction of traditional medicine; infrared spectroscopy that used in the research can be used as an accurate, rapid and effective method in the pharmacological activity tests of transitional herbal Swertia mussotii F. and it's different extracts, even in the research on the tibetan medicine.

Zuotai is composed mainly of β-HgS, while cinnabar mainly contains α-HgS. Both forms of HgS are used in traditional medicines and their safety is of concern. This study aimed to compare the hepatotoxicity potential of Zuotai and α-HgS with mercury chloride (HgCl2) and methylmercury (MeHg) in mice. Mice were orally administrated with Zuotai (30 mg/kg), α-HgS (HgS, 30 mg/kg), HgCl2 (33.6 mg/kg), or CH3HgCl (3.1 mg/kg) for 7 days, and liver injury and gene expressions related to toxicity, inflammation and Nrf2 were examined. Animal body weights were decreased by HgCl2 and to a less extent by MeHg. HgCl2 and MeHg produced spotted hepatocyte swelling and inflammation, while such lesions are mild in Zuotai and HgS-treated mice. Liver Hg contents reached 45-70 ng/mg in HgCl2 and MeHg groups; but only 1-2 ng/mg in Zuotai and HgS groups. HgCl2 and MeHg increased the expression of liver injury biomarker genes metallothionein-1 (MT-1) and heme oxygenase-1 (HO-1); the inflammation biomarkers early growth response gene (Egr1), glutathione S-transferase (Gst-mu), chemokine (mKC) and microphage inflammatory protein (MIP-2), while these changes were insignificant in Zuotai and HgS groups. However, all mercury compounds were able to increase the Nrf2 pathway genesNAD(P)H: quinone oxidoreductase 1 (Nqo1) and Glutamate-cysteine ligase, catalytic subunit (Gclc). In conclusion, the Tibetan medicine Zuotai and HgS are less hepatotoxic than HgCl2 and MeHg, and differ from HgCl2 and MeHg in hepatic Hg accumulation and toxicological responses.

Background. The circadian clock is involved in drug metabolism, efficacy and toxicity. Drugs could in turn affect the biological clock as a mechanism of their actions. Zuotai is an essential component of many popular Tibetan medicines for sedation, tranquil and "detoxification," and is mainly composed of metacinnabar (β-HgS). The pharmacological and/or toxicological basis of its action is unknown. This study aimed to examine the effect of Zuotai on biological clock gene expression in the liver of mice. Materials and methods. Mice were orally given Zuotai (10 mg/kg, 1.5-fold of clinical dose) daily for 7 days, and livers were collected every 4 h during the 24 h period. Total RNA was extracted and subjected to real-time RT-PCR analysis of circadian clock gene expression. Results. Zuotai decreased the oscillation amplitude of the clock core gene Clock, neuronal PAS domain protein 2 (Npas2), Brain and muscle Arnt-like protein-1 (Bmal1) at 10:00. For the clock feedback negative control genes, Zuotai had no effect on the oscillation of the clock gene Cryptochrome (Cry1) and Period genes (Per1-3). For the clock-driven target genes, Zuotai increased the oscillation amplitude of the PAR-bZip family member D-box-binding protein (Dbp), decreased nuclear factor interleukin 3 (Nfil3) at 10:00, but had no effect on thyrotroph embryonic factor (Tef); Zuotai increased the expression of nuclear receptor Rev-Erbα (Nr1d1) at 18:00, but had little influence on the nuclear receptor Rev-Erbβ (Nr1d2) and RORα. Conclusion. The Tibetan medicine Zuotai could influence the expression of clock genes, which could contribute to pharmacological and/or toxicological effects of Zuotai.

Abstract Ethnopharmacological relevance Tibetan medicine has been practiced for 3800 years. Anzhijinhua San (AZJHS), which is a traditional Tibetan medicine, has been effective in the treatment of indigestion, anorexia and cold diarrhea. However, the effects of AZJHS on allergic diarrhea have not been reported. Aim of the study The aim of the present study was to elucidate the effect of AZJHS on experimental ovalbumin-induced diarrhea and elucidate its possible mechanism. Materials and methods Female BALB/c mice were sensitized by intraperitoneal injection with 50 μg ovalbumin (OVA) and 1 mg alum in saline twice during a 2-week period. From day 28, mice were orally challenged with OVA (50 mg) every other day for a total of ten times. AZJHS (46.8 and 468.0 mg/kg) was orally administered every other day from day 0–46. Food allergy symptoms were evaluated. OVA- specific IgE, 5-HT and its metabolites in serum were determined. Immunohistochemical and histopathology were performed in gastrointestinal tract tissues. 5-HT-related gene expression was assayed in the colon. Results Severe symptoms of allergic diarrhea were observed in the model group (diarrhea, anaphylactic response, and rectal temperature). AZJHS (46.8 and 468.0 mg/kg) significantly reduced mouse diarrhea and significantly prevented the increases in OVA-specific IgE levels (P < 0.05), which challenge with OVA. AZJHS (46.8 and 468.0 mg/kg) significantly prevented the increases in 5-HT-positive cells. The nuclei of EC cells in the AZJHS (46.8 and 468.0 mg/kg) group increased in size and the secretory granules were fewer in number compared with those in the model group. AZJHS (46.8 and 468.0 mg/kg) significantly increased the relative fold changes of 5-HTP and 5-HT compared with the model group. The mRNA expression of the serotonin transporter (Sert) and serotonin receptor 3A (Htr3a) was significantly decreased after the 10th challenge with OVA, and AZJHS (46.8 and 468.0 mg/kg) significantly increased these levels. Conclusions We demonstrated that the administration of AZJHS attenuated OVA-induced diarrhea by regulating the serotonin pathway. These results indicated that AZJHS may be a potential candidate as an anti-allergic diarrhea agent. Graphical abstract fx1 [ABSTRACT FROM AUTHOR]

Mercury sulfides are used in Ayurvedic medicines, Tibetan medicines, and Chinese medicines for thousands of years and are still used today. Cinnabar (α-HgS) and metacinnabar (β-HgS) are different from mercury chloride (HgCl2) and methylmercury (MeHg) in their disposition and toxicity. Whether such scenario applies to weanling and aged animals is not known. To address this question, weanling (21d) and aged (450d) rats were orally given Zuotai (54% β-HgS, 30mg/kg), HgS (α-HgS, 30mg/kg), HgCl2 (34.6mg/kg), or MeHg (MeHgCl, 3.2mg/kg) for 7days. Accumulation of Hg in kidney and liver, and the toxicity-sensitive gene expressions were examined. Animal body weight gain was decreased by HgCl2 and to a lesser extent by MeHg, but unaltered after Zuotai and HgS. HgCl2 and MeHg produced dramatic tissue Hg accumulation, increased kidney (kim-1 and Ngal) and liver (Ho-1) injury-sensitive gene expressions, but such changes are absent or mild after Zuotai and HgS. Aged rats were more susceptible than weanling rats to Hg toxicity. To examine roles of transporters in Hg accumulation, transporter gene expressions were examined. The expression of renal uptake transporters Oat1, Oct2, and Oatp4c1 and hepatic Oatp2 was decreased, while the expression of renal efflux transporter Mrp2, Mrp4 and Mdr1b was increased following HgCl2 and MeHg, but unaffected by Zuotai and HgS. Thus, Zuotai and HgS differ from HgCl2 and MeHg in producing tissue Hg accumulation and toxicity, and aged rats are more susceptible than weanling rats. Transporter expression could be adaptive means to reduce tissue Hg burden.


  • Page
  • of 2