Skip to main content Skip to search
Displaying 1 - 25 of 38

Pages

  • Page
  • of 2
Our previous study isolated an anti-fatigue polysaccharide (HRWP) from the Hippophae rhamnoides berry. In this study, using ion-exchange chromatography and gel filtration chromatography in turn, a water-soluble homogenous polysaccharide HRWP-A was isolated from HRWP. Structural analysis determined that HRWP-A was a polysaccharide with repeating units of (1→4)-β-d-galactopyranosyluronic residues, of which 85.16% were esterified with methyl groups. An antitumor activity assay showed that HRWP-A could significantly inhibit the Lewis lung carcinoma (LLC) growth in tumor-bearing mice. Further experiments suggested that the antitumor effect of HRWP-A might be mediated through immunostimulating activity, as it enhances the lymphocyte proliferation, augments the macrophage activities, as well as promoting NK cell activity and CTL cytotoxicity in tumor-bearing mice. To our knowledge, this is the first report on a natural antitumor high-methoxyl homogalacturonan pectin from the H. rhamnoides berry-a compound that acts as a potential immunostimulant and anticancer adjuvant.

Ethnopharmacological relevance: The fruits of <b>Hippophae rhamnoides</b> L., <b>Lycium barbarum</b> L., <b>Lycium ruthenicum</b> Murr. and <b>Nitraria tangutorum</b> Bobr. are traditional medicinal food of Tibetans and used to alleviate fatigue caused by oxygen deficiency for thousands of years. The present study focused on exploiting natural polysaccharides with remarkable anti-fatigue activity from the four Qinghai-Tibet plateau characteristic berries.<br>Materials and methods: The fruits of <b>Hippophae rhamnoides</b>, <b>Lycium barbarum</b>, <b>Lycium ruthenicum</b> and <b>Nitraria tangutorum</b> were collected from Haixi national municipality of Mongol and Tibetan (N 36.32°, E98.11°; altitude: 3100 m), Qinghai, China. Their polysaccharides (HRWP, LBWP, LRWP and NTWP) were isolated by hot-water extraction, and purified by DEAE-Cellulose ion-exchange chromatography. The total carbohydrate, uronic acid, protein and starch contents of polysaccharides were determined by a spectrophotometric method. The molecular weight distributions of polysaccharides were determined by gel filtration chromatography. Their monosaccharide composition analysis was performed by the method of 1-phenyl-3-methyl-5-pyrazolone (PMP) pre-column derivatization and RP-HPLC analysis. HRWP, LBWP, LRWP and NTWP (50, 100 and 200 mg/kg) were orally administrated to mice once daily for 15 days, respectively. Anti-fatigue activity was assessed using the forced swim test (FST), and serum biochemical parameters were determined by an autoanalyzer and commercially available kits; the body and organs were also weighted.<br>Result: LBWP, LRWP and NTWP were mainly composed of glucans and some RG-I pectins, and HRWP was mainly composed of HG-type pectin and some glucans. All the four polysaccharides decreased immobility in the FST, and the effects of LBWP and NTWP were demonstrated in lower doses compared with HRWP and LRWP. There was no significant difference in liver and heart indices between non-treated and polysaccharide-treated mice, but the spleen indices were increased in LBWP and NTWP (200 mg/kg) group. Moreover, the FST-induced reduction in glucose (Glc), superoxide dismutase (SOD) and glutathione peroxidase (GPx) and increase in creatine phosphokinase (CK), lactic dehydrogenase (LDH), blood urea nitrogen (BUN), triglyceride (TG) and malondialdehyde (MDA) levels, all indicators of fatigue, were inhibited by HRWP, LBWP, LRWP and NTWP to a certain extent while the effects of LBWP and NTWP were much better than that of HRWP and LRWP at the same dosage.<br>Conclusion: Water-soluble polysaccharides HRWP, LBWP, LRWP and NTWP, from the fruits of four Tibetan plateau indigenous berry plants, significantly exhibited anti-fatigue activities for the first time, through triglyceride (TG) (or fat) mobilization during exercise and protecting corpuscular membrane by prevention of lipid oxidation via modifying several enzyme activities. Moreover, it is demonstrated that LBWP and NTWP are more potent than HRWP and LRWP, which were proposed to be applied in functional foods for anti-fatigue and antioxidant potential.<br><br>Display Omitted

The Nitraria tangutorum Bobr. fruit is an indigenous berry of the shrub belonging to the Zygophyllaceae family which grows at an altitude of over 3000 m in the Tibetan Plateau, and has been used as a native medicinal food for treating weakness of the spleen, stomach syndrome, dyspepsia, neurasthenia, dizziness, etc. for thousands of years. Nowadays, N. tangutorum industrial juice by-products generated from health food production can be a potential low cost source of some unique bioactive ingredients. In a prior study, we established a simultaneous microwave/ultrasonic assisted enzymatic extraction method for extracting antioxidant ingredients from the industrial by-products of N. tangutorum juice. In this study, these ingredients were selectively fractionated by cation-exchange resin chromatography to obtain an anthocyanin fraction namely NJBAE. NJBAE was found to be composed of 16 anthocyanins derived from six anthocyanidins by HPLC-ESI-MS, and has an appreciable cardioprotective effect on doxorubicin-induced injured H9c2 cardiomyocytes. The cardioprotective mechanism research showed that NJBAE could directly scavenge ROS, restrict further generation of ROS, promote the activity of key antioxidase, enhance glutathione redox cycling, then affect the apoptotic signaling changes in a positive way, and finally mediate caspase-dependent cell death pathways. Therefore, NJBAE has great potential to be used for preventing and treating cardiovascular disease in the food, pharmaceutical and other emerging industries.

OBJECTIVE: To investigate the chemical components and microstructure of Nengchi Bajin ashes which are adjuvant material in the refining of Tibetan medicine gTSo thal, in order to explore the material basis of the refining of gTSo thal.METHOD: Scanning electron microscope-energy dispersive spectrometer (SEM-EDX) and X-ray diffraction (XRD) were used to measure the Nengchi Bajin ashes. RESULT: SEM-EDX analysis show that except of themselves elements of Nengchi Bajin ashes, Nengchi Bajin ashes contain the major elements, such as S, O, C and so on, also contain small amount other elements. XRD analysis show that the structures are AuPb2, PbO (tetragonal and orthorhombic) and Pb in gold ash, Ag2S and PbO in silver ash, Cu1.98 (Zn0.73 Fe0.29)Sn0.99 S4, CuS, SiO2, NaCu2S2 and Ca (Fe(+2), Mg) (CO3)2 in bronze ash, Cu7S4 (orthorhombic and monoclinic) and CuO in red copper ash, Cu7 S4, PbS, ZnS, CaCO3and NaCu2S2 in brass ash, FeS, Fe+2 Fe(2+3)O4 and SiO2 in iron ash, SnS and SiO2 tin ash, PbS, PbSO4 and SnS2 in lead ash. CONCLUSION: We have acquired the datum of elements and microstructure of Nengchi Bajin ashes by SEM-EDX and XRD techniques, and that is benefit to explore the material basis of refining gTSo thal.

Zhuxi is a mineral medicine widely used in traditional Tibetan medicine throughout history. However, the bioactive component in Zhuxi still remains unclear. In order to enunciate the material basis of its pharmacological activity, the present research has determined the chemical component and structure of Zhuxi. X-ray fluorescence spectroscopy (XRF), inductively coupled plasma optical emission spectrometer (ICP-OES) and X-ray diffraction (XRD) were utilized to assay two samples of Zhuxi. XRF and ICP-OES analysis indicated that the main elements in Zhuxi are Fe, S and O, also containing some minor elements, such as Si, Na, Mg, Al, K, Ni, Ca, Ti and so on. XRD analysis suggested that the main crystal compound in Zhuxi is FeS2 (Cubic, Pa-3), also existing a few of Fe(+3)O(OH) (orthorhombic, Pbnm) and other some unknown compounds. These studies has highlighted the potential the element components and compound structures of Zhuxi, so it may be a good starting point for exploring the material basis of its pharmacological activity.

In order to reveal the chemical substance basis of pharmacodynamic effects of Zuotai, energy dispersive spectrometry of X-ray (EDX), X-ray fluorescence spectroscopy (XRF), synchrotron radiation X-ray absorption fine structure (SR-XAFS), X-ray diffraction (XRD), scanning electron microscope (SEM) and atomic force microscope (AFM) were used to analyze the elements, the chemical valence and local structure of mercury, and the chemical phase composition and micro-morphology of Zuotai. EDX and XRF analysis shows that the main elements in Zuotai are Hg and S, with some other minor elements, such as 0, Fe, Al, Cu, K, Ag, Ca, Mg etc. SR-XAFS analysis shows that: the oxidation state of mercury in Zuotai is divalence, its neighbor atoms are S, and its coordination number is four. XRD assay found that β-HgS (cubic, F-43m 216) and S8 (orthorhombic, Fddd 70) are the main phase compositions in Zuotai. Besides, it also has a small amount of C (hexagonal, P63/mmc 194), Fel.05 S0.95 (hexagonal, P63/mmc 194), Cu6S6 (hexagonal, P63/mmc 194), Cu1.8 S (cubic, F-43m 216) and so on. And it was found that the crystallinity of Zuotai is about 59%, and the amorphous morphology substance in it is about 41%. SEM and AFM detection suggests that Zuotai is a kind of ancient micro-nano drug, and its particle size is mainly in the range of 100-600 nm, even less than 100 nm, which commonly further aggregate into several to 30 µm loose amorphous particles. In summary, the present study elucidated physicochemical characterization(elements composition, coordination information of mercury, phase composition and micro-morphology) of Zuotai, and it will play a positive role in promoting the interpretation of this mysterious drug.;

Minerals are alchemically processed as Bhasmas in Ayurvedic medicines or as Zuotai in Tibetan medicines. Ayurveda is a knowledge system of longevity and considers the mineral elixir made from "nature" capable of giving humans perpetual life. Herbo-metallic preparations have a long history in the treatment of various diseases in India, China, and around the world. Their disposition, pharmacology, efficacy, and safety require scientific evaluation. This review discusses the Bhasmas in Ayurvedic medicines and Zuotai in Tibetan medicines for their occurrence, bioaccessibility, therapeutic use, pharmacology, toxicity, and research perspectives. A literature search on Mineral, Bhasma, Ayurvedic medicine, Zuotai, Tibetan medicine, and Metals/metalloids from PubMed, Google and other sources was carried out, and the relevant papers on their traditional use, pharmacology, and toxicity were selected and analyzed. Minerals are processed to form Bhasma or Zuotai to alter their physiochemical properties distinguishing them from environmental metals. The metals found in Ayurveda are mainly from the intentional addition in the form of Bhasma or Zuotai. Bhasma and Zuotai are often used in combination with other herbals and/or animal-based products as mixtures. The advanced technologies are now utilized to characterize herbo-metallic preparations as Quality Assurance/Quality Control. The bioaccessibility, absorption, distribution, metabolism, and elimination of herbo-metallic preparations are different from environmental metals. The pharmacological basis of Bhasma in Ayurveda and Zuotai in Tibetan medicines and their interactions with drugs require scientific research. Although the toxic potentials of Bhasma and Zuotai differ from environmental metals, the metal poisoning case reports, especially lead (Pb), mercury (Hg), and arsenic (As) from inappropriate use of traditional medicines, are increasing, and pharmacovigilance is desired. In risk assessment, chemical forms of metals in Bhasma and Zuotai should be considered for their disposition, efficacy, and toxicity.

Zuotai, a famous Tibetan medicinal mixture containing β-HgS, has been used to combine with herbal remedies for treating diseases for more than 1 300 years. The target organ for inorganic mercury toxicity is generally considered to be the kidney. Therefore, it is crucial to reveal the chemical speciation, spatial distribution and potential nephrotoxicity of mercury from Zuotai in kidney. To date, this remains poorly understood. We used X-ray absorption spectroscopy (XAS) and micro X-ray fluorescence (μ-XRF) imaging based on synchrotron radiation to study mercury chemical forms and mercury special distribution in kidney after mice were treated orally with Zuotai, β-HgS or HgCl2. Meanwhile, the histopathology of kidney was observed. Mice exposed with Zuotai showed kidney with significant proportion of mercury ions bound to sulfydryl biomolecules (e.g. Cys-S-Hg-S-Cys) plus some of unknown species, but without methylmercury cysteine, which is the same as β-HgS and HgCl2. The mercury is mainly deposited in renal cortex in mouse treated with Zuotai, β-HgS or HgCl2, but with a low level of mercury in medulla. The total mercury in kidney of mice treated with HgCl2 was much higher than that of β-HgS, and the later was higher than that of Zuotai. And, HgCl2 cause severe impairments in mouse kidney, but that was not observed in the Zuotai and β-HgS groups. Meanwhile, the bio-metals (Ca, Zn, Fe and Cu) micro-distributions in kidney were also revealed. These findings elucidated the chemical nature, spatial distribution and toxicity difference of mercury from Zuotai, β-HgS and HgCl2 in mouse kidney, and provide new insights into the appropriate methods for biological monitoring.

Zuotai (gTso thal) is one of the famous drugs containing mercury in Tibetan medicine. However, little is known about the chemical substance basis of its pharmacodynamics and the intrinsic link of different samples sources so far. Given this, energy dispersive spectrometry of X-ray (EDX), scanning electron microscopy (SEM), atomic force microscopy (AFM), and powder X-ray diffraction (XRD) were used to assay the elements, micromorphology, and phase composition of nine Zuotai samples from different regions, respectively; the XRD fingerprint features of Zuotai were analyzed by multivariate statistical analysis. EDX result shows that Zuotai contains Hg, S, O, Fe, Al, Cu, and other elements. SEM and AFM observations suggest that Zuotai is a kind of ancient nanodrug. Its particles are mainly in the range of 100–800 nm, which commonly further aggregate into 1–30 μm loosely amorphous particles. XRD test shows that β-HgS, S8, and α-HgS are its main phase compositions. XRD fingerprint analysis indicates that the similarity degrees of nine samples are very high, and the results of multivariate statistical analysis are broadly consistent with sample sources. The present research has revealed the physicochemical characteristics of Zuotai, and it would play a positive role in interpreting this mysterious Tibetan drug. [ABSTRACT FROM AUTHOR]

OBJECTIVE: To determine the composition, structure, trace elements and thermal stability of Tibetan medicine Nanhanshuishi.METHOD: The trace elements, the structure, and the thermal stability of Nanhanshuishi were assayed and calculated by X-ray fluorescence spectrometry (XRF), inductively coupled plasma optical emission spectrometer (ICP-OES), atomic fluorescence spectrometry (AFS), inductively coupled plasma mass spectrometry (ICP-MS), X-ray power diffraction (XRD), TG-DTA. RESULT: The results indicated that the phase is mainly made up of CaCO3 (Rhombohedral, R-3c) in Nanhanshuishi. The analysis of elements show that Nanhanshuishi is rich in Ca and O, and contains other more than 20 minor elements, such as Si, Mg, Fe, Al, Na, K, Zn, Mn, Pb, As, Hg etc. The result of TG-DTA show that the weight of Nanhanshuishi starts to decline from near 700 degrees C and get steady above 850 degrees C. CONCLUSION: The study provided scientific data for the establishment of quality standards of Tibetan medicine Nanhanshuishi.

Background: Zuotai, a famous Tibetan medicinal mixture containing metacinnabar, is traditionally used for the purpose of tranquilizing minds and soothing nerves. However, it still lacks substantial experimental data for it to be approved for use. Aim: This study was designed to assess the effects of Zuotai on depressive-like symptoms in a chronic unpredictable mild stress (CUMS) mouse model, and to explore its potential mechanism, particularly the hypothalamic-pituitary-adrenal (HPA) axis pathway. Materials and methods: First, Kunming mice were exposed to the CUMS procedure and simultaneously administered Zuotai or imipramine (positive control) by gavage continuously for 6 weeks. Then, depressive-like behaviors of mice in each group were tested with the sucrose preference test, forced swimming test, tail suspension test, and open field test. Meanwhile, the three key neuroendocrine hormones (corticotropin releasing hormone, adrenocorticotropic hormone and corticosterone) in HPA axis pathway, and the level of the emotion-related monoamine neurotransmitters (5-hydroxytryptamine and norepinephrine) were measured using enzyme-linked immunosorbent assay. Furthermore, total mercury in the hypothalamus and hippocampus were determined using an automatic, direct mercury analyzer. Results: Zuotai or imipramine significantly increased the body weight and the sucrose preference ratio in sucrose preference test, and dramatically improved motor activity in forced swimming test, tail suspension test, and open field test in CUMS mice. Zuotai or imipramine remarkably decreased levels of corticotropin-releasing hormone, adrenocorticotropic hormone, and corticosterone in the HPA axis, and increased levels of 5-hydroxytryptamine and norepinephrine in the serum in CUMS mice. However, a small amount of mercury was deposited in the hypothalamus and hippocampus in Zuotai-treated mice, which may pose a potential risk to the central nervous system. Conclusion: Zuotai has a strong ability to ameliorate depressive-like behaviors in CUMS-treated mice through inhibition of the HPA axis and upregulation of monoamine neurotransmitters. These findings provide new insight into the pharmacological effect of Zuotai on depression.

In an effort to discover potent VEGFR-2 inhibitors, a series of 2,4 or 4,6-disubstituted <b>O</b>-linked indoles derivatives were designed and synthesized. The structural activity relationships led to identification of a potential VEGFR-2 inhibitor compound <b>18</b>.<br>Inhibition of VEGFR-2 signaling pathway has already become one of the most promising approaches for the treatment of cancer. In this study, we describe the design, synthesis, and biological evaluation of a series of <b>O</b>-linked indoles as potent inhibitors of VEGFR-2. Among these compounds, <b>18</b> showed significant anti-angiogenesis activities <b>via</b> VEGFR-2 in enzymatic proliferation assays, with IC50 value of 3.8 nmol/L. Kinase selectivity profiling revealed that <b>18</b> was a multitargeted inhibitor, and it also exhibited good potency against VEGFR-1, PDGFR-<b>α</b> and <b>β</b>.

The mercury in Tibetan medicine has become important focus in the research on medicine safety evaluation. The total mercury and the ionic mercury in artificial gastric juice of Tibetan medicine Dangzuo were detected by Gold Amalgam Enrichment-Atomic Fluorescence Spectrometry (GAE-AFS). In the present study, Tibetan medicine Dangzuo was prepared by H2SO4-KNO3 digestion system and artificial gastric juice. The established method and condition of instrument were investigated. Under the optimum experimental conditions and instrumental operation parameters, the recovery (n=6) of HgS is 99.56$ (RSD = 1.94%), the limit of detection for mercury is 0.2 ng x L(-1), the linear range is 0-500 ng x L(-1), and r = 0.9999. Then, the total mercury and the ionic mercury in artificial gastric juice in Dangzuo samples from different Tibetan regions were assayed. The result showed that the ranges of total mercury and ionic mercury in artificial gastric juice were 3.9980-16.7358 x mg x g(-1) and 45.5377-1033.9850 ng x g(-1), respectively. The analytical method mentioned above is rapid and accurate for determining the amount of mercury in Tibetan medicine Dangzuo.

This study examined developmental toxicity of different mercury compounds, including some used in traditional medicines. Medaka (Oryzias latipes) embryos were exposed to 0.001-10 µM concentrations of MeHg, HgCl2, α-HgS (Zhu Sha), and β-HgS (Zuotai) from stage 10 (6-7 hpf) to 10 days post fertilization (dpf). Of the forms of mercury in this study, the organic form (MeHg) proved the most toxic followed by inorganic mercury (HgCl2), both producing embryo developmental toxicity. Altered phenotypes included pericardial edema with elongated or tube heart, reduction of eye pigmentation, and failure of swim bladder inflation. Both α-HgS and β-HgS were less toxic than MeHg and HgCl2. Total RNA was extracted from survivors three days after exposure to MeHg (0.1 µM), HgCl2 (1 µM), α-HgS (10 µM), or β-HgS (10 µM) to examine toxicity-related gene expression. MeHg and HgCl2 markedly induced metallothionein (MT) and heme oxygenase-1 (Ho-1), while α-HgS and β-HgS failed to induce either gene. Chemical forms of mercury compounds proved to be a major determinant in their developmental toxicity.

Zuotai, also named as "gTso thal", a known Tibetan medicinal mixture containing insoluble cubic crystal mercuric sulfide (β-HgS), has been used to treat diseases with long history. The mercury release ratio from Zuotai in gastrointestinal environment is one determinant factor for its bioavailability and biological effect. However, the information is still scarce now. Therefore, the study was designed to investigate the effect of sulfhydryl biomolecules [L-cysteine (Cys) and glutathione (GSH)] and pH on mercury dissociation from Zuotai, β-HgS, and hexagonal crystal mercuric sulfide (α-HgS) in artificial gastrointestinal juices or pure water with a 1:100 solid-liquid ratio. And, the digestion and peristalsis of gastrointestinal tract were simulated in vitro. The results showed the following trend for the mercury release ratio of Zuotai, artificial gastric juice > artificial intestinal juice > pure water, whereas the trend for β-HgS and α-HgS was as follows, artificial intestinal fluid > artificial gastric fluid > pure water. The mercury release ratios of Zuotai, β-HgS, and α-HgS significantly increased in artificial intestinal juice containing L-Cys or GSH compared to those without sulfhydryl biomolecules in the juice. However, in contrast to the results observed for β-HgS and α-HgS, the mercury release ratio of Zuotai was reduced remarkably in pure water and artificial gastric juice with Cys or GSH. And, we found that strong acidic or strong alkaline environments promoted the dissociation of mercury from Zuotai, β-HgS, and α-HgS. Taken together, current findings may contribute to other studies regarding clinical safety and bioavailability of the traditional drug Zuotai containing β-HgS.

Zuotai is a drug containing mercury considered to be the king of Tibetan medicine. The biosafety of Zuotai led people's attention and so far little is known about the toxicity of Zuotai to mast cells. RBL-2H3 cells which used as an alternative model of mast cells were treated with Zuotai, β-HgS and positive drug Compound 48/80 respectively. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to determine the toxicity of drugs to RBL-2H3 cells. The degranulation of RBL-2H3 cells was studied from β-hexosaminidase, histamine, interleukin (IL)-4 and tumor necrosis factor-α (TNF-α). The result showed that Zuotai can affect the cytotoxicity and degranulation of RBL-2H3 cells and the results can provide reference for the toxicity evaluations of Tibetan medicine Zuotai.

Zuotai and cinnabar(96%HgS) are contained in many traditional medicines. To examine their potential effects on drug metabolism genes, mice were orally given Zuotai or HgS at doses of 10, 30, 100, 300 mg•kg⁻¹ for 7 days. HgCl2(33.6 mg•kg⁻¹) was gavaged for control. Twenty-four hour later after the last administration, livers were collected, and expressions of genes related to metabolic enzymes and transporters were examined. Zuotai and HgS had no effects on major phase-1, phase-2 and transporter genes; HgCl2 increased the expressions of CYP2B10, CYP4A10, OATP1A4, UGT1A1, UGT2A3, SULT1A1, SULT2A1, MRP1, MRP3 and MRP4; expression of OATP1A1 was decreased by HgCl2, but not by Zuotai and HgS. Therefore, Zuotai and HgS have different adverse effects on drug-metabolizing genes from HgCl2.

Abstract Ethnopharmacological relevance Zuotai (gTso thal) has a long history in the treatment of cardiovascular disease, liver and bile diseases, spleen and stomach diseases as a precious adjuvant in Tibetan medicine. However, Zuotai is a mercury preparation that contains 54.5% HgS. Its application has always been controversial. Aim of the study To evaluate the toxicological effects of Zuotai in hepatocytes and in zebrafish. Materials and methods MTT was used to determine the survival rate of hepatocytes; Hoechst and TUNEL staining were used to detect the apoptosis cells; Western blot and RT-qPCR assay were used to determine the expression levels of the protein and mRNA; Liver morphology observation and H&E staining were used to evaluate the hepatotoxicity of Zuotai in Zebfrafish. Results The survival rate of L-02 cells, HepG2 cells and RBL-2A cells reduced by Zuotai (10−4–0.1 mg/mL) in a dose and time-dependent manner. Zuotai (0.1 mg/mL) induced HepG2 cells shrinkage, condensation and fragmentation and increased the number of apoptosis cells. The protein expression levels of cleaved Caspase-3 and Bax were increased and the expression levels of Bcl-2 were reduced after HepG2 cells exposed to Zuotai (10−4–0.1 mg/mL) for 24 h. In addition, Zuotai (0.2 mg/mL) induced the darker liver color of the larval zebrafish and changed the liver morphologic of adult zebrafish. Zuotai (0.2 mg/mL) also increased the mRNA levels of CYP1A1, CYP1B1 and MT-1 in the liver of adult zebrafish. However, no significantly hepatotoxicity was observed after hepatocytes and zebrafish exposed to HgS at the same dose. Conclusions Results showed that Zuotai induced hepatotoxicity effectively under a certain dose but its hepatotoxicity likely occurs via other mechanisms that did not depend on HgS. Graphical abstract Zuotai, a clinical adjuvant in Tibetan medicine, contains 54.5% HgS, which can induce apoptosis of liver cells and liver injury in zebrafish. However, HgS, the principal component of Zuotai did not exhibit hepatotoxicity at the same dose. fx1 [ABSTRACT FROM AUTHOR]

<br>Display Omitted<br>• Mercuric chloride-human serum albumin adduct causes hormesis in N9 microglia cells. • Hormesis was implemented through ERK/MAPKs and JAK/STAT3 signaling pathways. • 15 ng/mL of Hg-HSA was close to a NOAEL for N9 cells and this dose may be beneficial. • Hg2+ could form stable coordination structures in both Asp249 site and Cys34 site of HSA.<br>Mercury chloride (HgCl2), a neurotoxicant that cannot penetrate the blood-brain barrier (BBB). Although when the BBB are got damaged by neurodegenerative disorders, the absorbed HgCl2, mainly in form of Hg (II)-serum albumin adduct (Hg-HSA) in human plasma, can penetrate BBB and affect central nervous system (CNS) cells. Current study planned to evaluate the effect of Hg-HSA on the physiological function of N9 microglial cells. At low dosage (15 ng/mL) of Hg-HAS, the observed outcomes was: promoted cell propagation, Nitric Oxide (NO) and intracellular Ca2+ levels enhancement, suppressed the release of TNF-α and IL-1β and inhibited cell proliferation. At high dosage (15 μg/mL) we observed decline in NO and intracellular Ca2+ levels, and increment in the release of TNF-α and IL-1β. These biphasic effects are similar to hormesis, and the hormesis, in this case, was executed through ERK/MAPKs and JAK/STAT3 signaling pathways. Study of quantum chemistry revealed that Hg2+ could form stable coordination structures in both Asp249 and Cys34 sites of HSA. Although five-coordination structure in Asp249 site is more stable than four-coordination structure in Cys34 site but four-coordination structure is formed easily in-<b>vivo</b> in consideration of binding-site position in spatial structure of HSA.

Objective: To develop an HPLC method for determination of gallic acid, hydroxysafflor yellow A, cinnamic aldehyde and piperine in Tibetan medicine Dangzuo, and to compare the content of four active components in Dangzuo of different Tibetan regions.; Method: The separation was carried out on a Waters XTerra RP-C18 column ( 4.6 mm x 250 mm, 5 microm). The mobile phases were methanol and water, all contained 0.1% glacial acetic acid, for gradient elution. The gradient program was as follows: 0-22.5 min, methanol was changed from 5% to 50%; 22.5-40 min, changed to 80% 80:20. The flow rate was 1.0 mL x min(-1). The detection wavelength was 270 nm. The reference wavelength was 500 nm.; Result: The linear ranges of gallic acid, hydroxysafflor yellow A, cinnamic aldehyde and piperine were 0.040-0.640 microg (r = 0.999 8), 0.090-1.440 microg (r = 0.999 9), 0.031-0.500 microg (r = 0.999 9 ) and 0.092-41.477 microg (r = 0.998 9), respectively. The average recoveries (n = 6) were 97.42% (RSD 1.9%), 97.55% (RSD 2.9%), 98.69% (RSD 0.96%) and 96.72% (RSD 4.0%), respectively. The content ranges of gallic acid, hydroxysafflor yellow A, cinnamic aldehyde and piperine in Dangzuo samples of different Tibetan regions were 0.11341.69 mg x g(-1), 0.889-1.51 mg x g(-1), 0.000-40.606 mg x g(-1) and 1.96-2.73 mg x g(-1), respectively.; Conclusion: The method is a simple and effective for quality control of Tibetan medicine Dangzuo.;

An HPLC-UV-MS method for simultaneous identification of predominant phenolics and minor nucleoside derivatives in<i> Gastrodia elata</i> was developed, which was based on their UV and MS characteristics summarized through a series of homemade reference standard experiments. Phenolics showed characteristic UV λ<sub>max</sub> at 267 nm, [M + NH₄]⁺ base peak in positive mode and [M-H]⁻ base peak in negative mode while nucleosides exhibited UV λ<sub>max</sub> at 255 nm, [M + H]⁺, [M-H + 2H₂O]⁻ or [M-H + CH₃COOH]⁻. Phenolics conjugates mainly underwent the consecutive loss of gastrodin residue (-268 U) and the combined loss of H₂O and CO<sub>2 </sub>from the citric acid unit under negative MS/MS conditions whereas nucleosides simply lost the ribose (-132 U) under positive MS/MS conditions. According to these characteristics, a special pattern under MS/MS conditions and reported compound data for<i> G. elata</i> in the literature, not only 15 phenolics were identified but also 6 nucleoside derivatives were identified. Among these compounds, seven phenolics and three nucleoside derivatives have not been reported yet from<i> G. elata</i>.

To discuss the relationship between metallic element and disease through determine the elementals in Tibetan Herbal Medicines and Tibetan Medicine Preparations that have obvious effect on hepatobiliary diseases by Synchrotron Radiation X-ray Source, then to reveal the substance foundation of pharmacological action. The results show that all the Tibetan Herbal Medicines used in the experiment have the 9 kinds of metallic elements of potassium(K), calcium(Ca), titanium(Ti), vanadium(V), chromium(Cr), manganese(Mn), ferrum(Fe), zinc(Zn) and lead(Pb), the content of the elements are in the ppb or ppm level though the element constitute and the content have obvious difference. Tibetan Medicine Preparations have another 6 kinds of metallic elements of nickel(Ni), copper(Cu), rubidium(Rb), mercury(Hg), cobalt(Co), gallium(Ga) and 1 kind of nonmetallic elements of arsenic(As) when compare with Herbal Medicines, and the element constitute and the content also have obvious difference. Take advantage of SR-XRF, the test gets the basic data of elements of Tibetan Herbal Medicines and Preparations, supply the scientific support to discuss the interaction of pharmacological mechanism and the metallic elements, and find the suitability of the technique for the metallic elements detection in Tibetan Medicines.

Mercury sulfide is an insoluble inorganic mercury compound, and it is the main chemical form in traditional oral mercury-containing medicines. Hg2+ has a high affinity for thiols, and small molecule thiols in the gastrointestinal tract may promote mercury dissolution of mercury sulfide by binding to Hg2+. L-cysteine is the only amino acid that possesses a reducing sulfhydryl group (-SH), out of the 20 amino acids. This study investigates the effect of L-cysteine on mercury dissolution of mercury sulfide at pHs ranging from 1.2 to 7.2. The results showed that L-cysteine had different pH-dependent effects on the mercury dissolution of α-HgS and β-HgS. For α-HgS, the dissolved mercury concentration increased from 5.47 ± 0.97 ng/mL to 12.49 ± 0.54 ng/mL when the pH rose from 1.2 to 4.2, and decreased to 3.37 ± 0.70 ng/mL at pH 6.0 and then increased to 9.36 ± 0.79 ng/mL at pH 7.2. For β-HgS, the dissolved mercury concentration increased from 151.09 ± 2.25 ng/mL to 2346.71 ± 62.62 ng/mL when the pH increased from 1.2 to 7.2. In conclusion, L-Cys was distinctly enhanced upon mercury dissolution of α-HgS and β-HgS with increasing pH. These results may contribute to our understanding of the mercury absorption mechanism of traditional oral mercury-containing medicines.

Pages

  • Page
  • of 2