Skip to main content Skip to search
Displaying 1 - 8 of 8
Background: Dracocephalum heterophyllum was a traditional Tibetan medicine possesses various pharmacological effects involved in anti-inflammatory, antibacterial activities. However, its anti-hepatitis, antioxidant activity and bioactive compounds have not been reported, the objective of this research work was to investigate the pharmacological activity and bioactive compounds of D. heterophyllum extracts. Results: In the present study, the anti-hepatics and antioxidant activities of four D. heterophyllum extracts (i.e. petroleum ether extracts, ethyl acetate extracts, n-BuOH extracts, and water extracts) were conducted. The main chemical constituent of petroleum ether and ethyl acetate extracts were also isolated using chromatographic techniques and identified by NMR spectroscopic methods. The anti-hepatitis assay showed that the petroleum ether and ethyl acetate extracts of D. heterophyllum significantly prolonged the mean survival times and reduced the mortality of mouse hepatitis model induced by concanavalin A (ConA). The levels of alanine transaminase, aspartate transaminase in blood serum could be decreased obviously by ethyl acetate extracts compared with ConA group (P < 0.01). The histological analysis demonstrated that the ethyl acetate extracts could inhibit apoptosis and necrosis caused by ConA. In addition, the antioxidant activities of the four extracts of D. heterophyllum were measured by DPPH assay, ABTS assay, anti-lipidperoxidation assay, ferric reducing antioxidant power assay, ferrous metal ions chelating assay and determination of total phenolic contents. The results showed that the ethyl acetate extract had the highest antioxidant activities, followed by petroleum ether extract. Finally, nine mainly compounds were isolated from the Petroleum ether and ethyl acetate extracts, including four triterpenes: oleanolic acid ( 1), ursolic acid ( 2), pomolic acid ( 3), 2α- hydroxyl ursolic acid ( 4), three flavonoids: apigenin-7- O-rutinoside ( 5), luteolin ( 8), diosmetin ( 9) and two phenolic acids: rosmarinic acid ( 6), methyl rosmarinate ( 7). Conclusion: The Ethyl acetate extract of D. heterophyllum had the highest anti-hepatitis and antioxidants activities, followed by petroleum ether extract. The bioactive substances may be triterpenes, flavonoids and phenolic acids, the ethyl acetate extracts of D. heterophyllum may be possible candidates in developing anti-hepatitis medicine.

BACKGROUND: In previous investigation, we have identified antioxidative effects of water-soluble ethanolic extracts (named as AKE) from Arenaria kansuensis and inferred that these extracts or their constituents may also have antihypoxic activity. A. kansuensis has been widely used in traditional Tibetan medicine for altitude sickness (AS) and has been known as the herb of anti-inflammatory and hypoxia resistance for a long time.PURPOSE: The purpose of this study is to evaluate protective effects of AKE and its major constituents against hypoxia-induced lethality in mice and RSC96 cells. STUDY DESIGN AND METHODS: Hypoxia-induced lethality in mice was investigated by 3 experimental animal models of hypoxia. Meanwhile, we established a RSC96 cell model of hypoxia which applied to screen and assess the anti-hypoxic activity of compounds isolated from A. kansuensis. RESULTS: Results indicated that AKE dose-dependently prolonged survival time of hypoxia induced lethality in mice compared to vehicle group and exhibited significantly anti-hypoxic effect. AKE also enhanced the number of red blood cells (RBC) and the concentration of hemoglobin (HB). 8 compounds were bio-guided separated and purified from AKE based on the animal model and cell model of hypoxia. Among which pyrocatechol (C16) and tricin 7-O-β-d-glucopyranoside (C13) were confirmed to express better protective effects on cell damage induced by hypoxia, suggesting that these two compounds are major active constituents of AKE for anti-hypoxia. CONCLUSION: This study demonstrated that pyrocatechol and tricin 7-O-β-d-glucopyranoside could be therapeutic candidates for treatment of AS. It is the first time to find the major active constituents of AKE for anti-hypoxia. Meanwhile, a RSC96 cell model of hypoxia was established to screen anti-hypoxic activity of compounds for the first time.

Background: Hypecoum leptocarpum Hook. f. et Thoms., which is used in traditional Tibetan medicine as an antipyretic, antitussive, analgesic, and anti-inflammatory agent, contains a variety of alkaloids that could be responsible for its analgesic and anti-inflammatory properties. Objective: The present study was designed to investigate the anti-inflammatory activity of the total alkaloids from H. leptocarpum (AHL) in vitro and to elucidate the chemical structure of the anti-inflammatory components in AHL. Materials and Methods: Chemical characterization was performed using liquid chromatography/quadrupole-time-of-flight mass and diode-array detector-high performance liquid chromatography. The anti-inflammatory effects of AHL were investigated by measuring the production of inflammatory cytokines using enzyme-linked immunosorbent assay and mRNA expression by real-time polymerase chain reaction in lipopolysaccharide-induced RAW 264.7 macrophages. Results: Chemical analysis of AHL revealed the presence of seven alkaloids, protopine (13.3%), cryptopine (1.5%), leptopidinine, leptocarpine, corydamine, dihydroleptopine, and oxohydrastinine. AHL significantly suppressed the production of nitric oxide (NO), interleukin-1 beta (IL-1 β), IL-6, and tumor necrosis factor-alpha (TNF-α) in LPS-induced RAW 264.7 cells. The maximum levels of suppression of NO, IL-1 β, IL-6, and TNF-α were 86.8% ± 2.2%, 70.1% ± 1.5%, 100.1% ± 2.5%, and 50.8% ± 3.6%, respectively. IC50values of suppression of cytokine production by AHL were 7.47 ± 2.81 μg/mL (NO), 0.12 ± 0.28 μg/mL (IL-1 β), 0.56 ± 0.37 μg/mL (IL-6), and 18.95 ± 5.23 μg/mL (TNF-α). AHL was also shown to downregulate mRNA expression of inducible NO synthase, IL-1 β, IL-6, and TNF-α in vitro. Conclusion: The study provides convincing evidence that AHL has strong anti-inflammatory activity. The potent activity is likely a result of synergy between the different alkaloids. Abbreviations used: The total alkaloids from H. leptocarpum: AHL; Nitric oxide: NO; Interleukin-1 beta IL-1β; Interleukin-6: IL-6; Tumor necrosis factor-alpha: TNF-α; Prostaglandin E2: PGE2; Inducible nitric oxide synthase: iNOS; Nonsteroidal anti-inflammatory drugs: NSAIDs; lipopolysaccharide: LPS; The total ion chromatograms: TIC; The liquid chromatography/quadrupole-time of flight: LC/Q-TOF; Nuclear factor-kappa B: NF-κB; Janus kinase-signal transducers and activators of transcription: JAK-STAT. [ABSTRACT FROM AUTHOR]

Traditional Tibetan medicine provides an abundant source of knowledge on human ailments and their treatment. As such, it is necessary to explore their active single compounds used to treat these ailments to discover lead compounds with good pharmacologic properties. In this present work, animal medicine, Osteon Myospalacem Baileyi extracts have been separated using a two-dimensional preparative chromatographic method to obtain single compounds with high purity as part of the following pharmacological research. Five high-purity cyclic dipeptides from chromatography work were studied for their dihydroorotate dehydrogenase inhibitory activity on recombinant human dihydroorotate dehydrogenase enzyme and compound Fr. 1-4 was found to contain satisfying inhibition activity. The molecular modeling study suggests that the active compound Fr. 1-4 may have a teriflunomide-like binding mode. Then, the energy decomposition study suggests that the hydrogen bond between Fr. 1-4 and Arg136 can improve the binding mode to indirectly increase the van der Waals binding energy. All the results above together come to the conclusion that the 2, 5-diketopiperazine structure group can interact with the polar residues well in the active pocket using electrostatic power. If some proper hydrophobic groups can be added to the sides of the 2, 5-diketopiperazine group, it is believed that better 2, 5-diketopiperazine dihydroorotate dehydrogenase inhibitors will be found in the future.

We used the Box-Behnken design to optimize polysaccharide extraction from <b>Armillaria luteo-virens</b> (Alb. et Schw. Fr.) Sacc. The independent factors included extraction time (X1), microwave power (X2) and water to raw material ratio (X3). The experimental values were fitted to a second-order polynomial equation using multiple regression analysis and a statistical method. Analysis of Variance results indicated that all factors including X1 - X3 had an impact on <b>Armillaria luteo-virens</b> (Alb. et Schw. Fr.) Sacc. polysaccharide extraction. The optimal conditions for efficient yield of polysaccharide, giving a maximum yield of 8.43%, were: X1 = 30.24 min, X2 = 600.6 W and X3 = 40 mL/g. The model was verified by modifying the optimal conditions (X1 = 30 min, X2 = 601 W and X3 = 40 mL/g) for practical application. A pilot scale test was also carried out under optimal conditions. The obtained yields 8.40 ± 0.12% and 8.34 ± 0.25% were comparable with the optimized condition, which indicated that our model is accurate. Fourier transform infrared spectroscopy characterization revealed that the extracted polysaccharide produced typical absorption peaks. Oxygen radical absorbance capacity results showed the polysaccharides had good potential as an antioxidant. Moreover, the polysaccharide showed relatively strong inhibitory activity on the growth of NCI-H446 cells.<br>• Extraction of ALSP by DEAE technique for the first time. • DEAE method for the extraction of ALSP was built. • ALSP has possessed a good antioxidant activity. • ALSP exhibited antiproliferative activities and may be applied in therapy.

A phytochemical investigation on Lagotis brevituba led to the isolation and characterisation of 11 phenolic compounds: p-hydroxy-benzoic acid 1, methyl 3,4-dihydroxybenzoate 2, vanillic acid 3, protocatechuic acid 4, caffeic acid 5, glucose ester of (E)-ferulic acid 6, p-coumaric acid 7, vanillin 8, diosmetin-7-O-β-d-glucoside 9, chrysoeriol 10 and luteolin 11. Their structures were elucidated using spectroscopic methods and by comparison with data in the literature. Compounds 1-6 were first obtained from the genus Lagotis, and compounds 1-9 were isolated from L. brevituba for the first time. Compound 4 and 11 displayed remarkable antioxidant activities against DPPH radical (IC50 = 5.60 ± 0.09, 27.5 ± 0.06 mg/L, respectively), which were superior to positive control rutin. And compound 11 was also superior to rutin in ABTS assay (IC50 = 2.04 ± 0.13 mg/L).