Displaying 1 - 2 of 2
Researchers focused on patient-centered medicine are increasingly trying to identify baseline factors that predict treatment success. Because the quantity and function of lymphocyte subsets change during stress, we hypothesized that these subsets would serve as stress markers and therefore predict which breast cancer patients would benefit most from mindfulness-based stress reduction (MBSR)-facilitated stress relief. The purpose of this study was to assess whether baseline biomarker levels predicted symptom improvement following an MBSR intervention for breast cancer survivors (MBSR[BC]). This randomized controlled trial involved 41 patients assigned to either an MBSR(BC) intervention group or a no-treatment control group. Biomarkers were assessed at baseline, and symptom change was assessed 6 weeks later. Biomarkers included common lymphocyte subsets in the peripheral blood as well as the ability of T cells to become activated and secrete cytokines in response to stimulation with mitogens. Spearman correlations were used to identify univariate relationships between baseline biomarkers and 6-week improvement of symptoms. Next, backward elimination regression models were used to identify the strongest predictors from the univariate analyses. Multiple baseline biomarkers were significantly positively related to 6-week symptom improvement. The regression models identified B-lymphocytes and interferon-γ as the strongest predictors of gastrointestinal improvement (p < .01), +CD4+CD8 as the strongest predictor of cognitive/psychological (CP) improvement (p = .02), and lymphocytes and interleukin (IL)-4 as the strongest predictors of fatigue improvement (p < .01). These results provide preliminary evidence of the potential to use baseline biomarkers as predictors to identify the patients likely to benefit from this intervention.
Objectives:This randomized controlled trial was conducted to examine immune recovery following breast cancer (BC) therapy and evaluate the effect of mindfulness-based stress reduction therapy (MBSR) on immune recovery with emphasis on lymphocyte subsets, T cell activation, and production of T-helper 1 (Th1; interferon [IFN]-γ) and T-helper 2 (Th2; interleukin-4 [IL-4]) cytokines.
Method:
Participants who completed the study consisted of 82 patients diagnosed with Stage 0–III BC, who received lumpectomy and adjuvant radiation ± chemotherapy. Patients were randomized into an MBSR(BC) intervention program or a control (usual care) group. Immune cell measures were assessed at baseline and within 2 weeks after the 6-week intervention. The numbers and percentages of lymphocyte subsets, activated T cells, and Th1 and Th2 cells in peripheral blood samples were determined by immunostaining and flow cytometry.
Results:
Immune subset recovery after cancer treatment showed positive associations with time since treatment completion. The B and natural killer (NK) cells were more susceptible than T cells in being suppressed by cancer treatment. Women who received MBSR(BC) had T cells more readily activated by the mitogen phytohemagglutinin (PHA) and an increase in the Th1/Th2 ratio. Activation was also higher for the MBSR(BC) group if <12 weeks from the end of treatment and women in MBSR(BC) <12 weeks had higher T cell count for CD4+.
Conclusion:
MBSR(BC) promotes a more rapid recovery of functional T cells capable of being activated by a mitogen with the Th1 phenotype, whereas substantial recovery of B and NK cells after completion of cancer treatment appears to occur independent of stress-reducing interventions.