Skip to main content Skip to search
Displaying 51 - 57 of 57

Pages

  • Page
  • of 3
Liver fibrosis is a severe health problem, threatening the life quality and causing death, raising great concerns worldwide. Shi-Wei-Gan-Ning-Pill (SWGNP) is a traditional Tibetan recipe used to treat hepatic injuries; however, its hepatoprotective mechanism has not yet fully clarified. In this study, histological staining, biochemical assays, and elements determination were applied to evaluate the anti-fibrotic efficacy of SWGNP on a carbon tetrachloride (CCl4) induced hepato-fibrosis rat model. NMR-based metabolomics combined with orthogonal partial least squares-discriminant analysis (OPLS-DA), canonical regression analysis, and correlation networks analysis was used to characterize the potential biomarkers as well as metabolic pathways associated with the hepatoprotective activity of SWGNP. The results showed that SWGNP could significantly attenuate the pathological changes and decrease the levels of fibrosis markers (ColIV, HA, LN, and PCIII), and regulate the disordered elements distribution. Multivariate analysis and correlation network analysis revealed that SWGNP could protect rats against CCl4-induced liver fibrosis through anti-oxidation, repairing the impaired energy metabolisms and reversing the disturbed amino acids and nucleic acids metabolisms. In conclusion, this integrated metabolomics approach provided new insights into the mechanism of the hepatoprotective effect of SWGNP in liver fibrosis disease.

Liver fibrosis is a severe health problem, threatening the life quality and causing death, raising great concerns worldwide. Shi-Wei-Gan-Ning-Pill (SWGNP) is a traditional Tibetan recipe used to treat hepatic injuries; however, its hepatoprotective mechanism has not yet fully clarified. In this study, histological staining, biochemical assays, and elements determination were applied to evaluate the anti-fibrotic efficacy of SWGNP on a carbon tetrachloride (CCl4) induced hepato-fibrosis rat model. NMR-based metabolomics combined with orthogonal partial least squares-discriminant analysis (OPLS-DA), canonical regression analysis, and correlation networks analysis was used to characterize the potential biomarkers as well as metabolic pathways associated with the hepatoprotective activity of SWGNP. The results showed that SWGNP could significantly attenuate the pathological changes and decrease the levels of fibrosis markers (ColIV, HA, LN, and PCIII), and regulate the disordered elements distribution. Multivariate analysis and correlation network analysis revealed that SWGNP could protect rats against CCl4-induced liver fibrosis through anti-oxidation, repairing the impaired energy metabolisms and reversing the disturbed amino acids and nucleic acids metabolisms. In conclusion, this integrated metabolomics approach provided new insights into the mechanism of the hepatoprotective effect of SWGNP in liver fibrosis disease.

As a form of traditional, complementary, and alternative medicine (TCAM), traditional Tibetan medicine has developed into a mainstay of medical care in Tibet and has spread from there to China and then to the rest of the world. Thus far, research on traditional Tibetan medicine has focused on the study of the plant and animal sources of traditional medicines, study of the histology of those plants and animals, chemical analysis of traditional medicines, pharmacological study of those medicines, and evaluation of the clinical efficacy of those medicines. A number of papers on traditional Tibetan medicines have been published, providing some evidence of the efficacy of traditional Tibetan medicine. However, many traditional Tibetan medicines have unknown active ingredients, hampering the establishment of drug quality standards, the development of new medicines, commercial production of medicines, and market availability of those medicines. Traditional Tibetan medicine must take several steps to modernize and spread to the rest of the world: the pharmacodynamics of traditional Tibetan medicines need to be determined, the clinical efficacy of those medicines needs to be verified, criteria to evaluate the efficacy of those medicines need to be established in order to guide their clinical use, and efficacious medicines need to be acknowledged by the pharmaceutical market. The components of traditional Tibetan medicine should be studied, traditional Tibetan medicines should be screened for their active ingredients, and techniques should be devised to prepare and manufacture those medicines.

As a form of traditional, complementary, and alternative medicine (TCAM), traditional Tibetan medicine has developed into a mainstay of medical care in Tibet and has spread from there to China and then to the rest of the world. Thus far, research on traditional Tibetan medicine has focused on the study of the plant and animal sources of traditional medicines, study of the histology of those plants and animals, chemical analysis of traditional medicines, pharmacological study of those medicines, and evaluation of the clinical efficacy of those medicines. A number of papers on traditional Tibetan medicines have been published, providing some evidence of the efficacy of traditional Tibetan medicine. However, many traditional Tibetan medicines have unknown active ingredients, hampering the establishment of drug quality standards, the development of new medicines, commercial production of medicines, and market availability of those medicines. Traditional Tibetan medicine must take several steps to modernize and spread to the rest of the world: the pharmacodynamics of traditional Tibetan medicines need to be determined, the clinical efficacy of those medicines needs to be verified, criteria to evaluate the efficacy of those medicines need to be established in order to guide their clinical use, and efficacious medicines need to be acknowledged by the pharmaceutical market. The components of traditional Tibetan medicine should be studied, traditional Tibetan medicines should be screened for their active ingredients, and techniques should be devised to prepare and manufacture those medicines.

Abstract Ethnopharmacological relevance Tibetan medicine has been practiced for 3800 years. Anzhijinhua San (AZJHS), which is a traditional Tibetan medicine, has been effective in the treatment of indigestion, anorexia and cold diarrhea. However, the effects of AZJHS on allergic diarrhea have not been reported. Aim of the study The aim of the present study was to elucidate the effect of AZJHS on experimental ovalbumin-induced diarrhea and elucidate its possible mechanism. Materials and methods Female BALB/c mice were sensitized by intraperitoneal injection with 50 μg ovalbumin (OVA) and 1 mg alum in saline twice during a 2-week period. From day 28, mice were orally challenged with OVA (50 mg) every other day for a total of ten times. AZJHS (46.8 and 468.0 mg/kg) was orally administered every other day from day 0–46. Food allergy symptoms were evaluated. OVA- specific IgE, 5-HT and its metabolites in serum were determined. Immunohistochemical and histopathology were performed in gastrointestinal tract tissues. 5-HT-related gene expression was assayed in the colon. Results Severe symptoms of allergic diarrhea were observed in the model group (diarrhea, anaphylactic response, and rectal temperature). AZJHS (46.8 and 468.0 mg/kg) significantly reduced mouse diarrhea and significantly prevented the increases in OVA-specific IgE levels (P < 0.05), which challenge with OVA. AZJHS (46.8 and 468.0 mg/kg) significantly prevented the increases in 5-HT-positive cells. The nuclei of EC cells in the AZJHS (46.8 and 468.0 mg/kg) group increased in size and the secretory granules were fewer in number compared with those in the model group. AZJHS (46.8 and 468.0 mg/kg) significantly increased the relative fold changes of 5-HTP and 5-HT compared with the model group. The mRNA expression of the serotonin transporter (Sert) and serotonin receptor 3A (Htr3a) was significantly decreased after the 10th challenge with OVA, and AZJHS (46.8 and 468.0 mg/kg) significantly increased these levels. Conclusions We demonstrated that the administration of AZJHS attenuated OVA-induced diarrhea by regulating the serotonin pathway. These results indicated that AZJHS may be a potential candidate as an anti-allergic diarrhea agent. Graphical abstract fx1 [ABSTRACT FROM AUTHOR]

A sensitive and inexpensive method involving ultrasound-assisted dispersive liquid-liquid microextraction (UA-DLLME) and pre-column derivatization followed by high-performance liquid chromatography with fluorescence detection (HPLC-FLD) was developed for the analysis of glycyrrhetinic acid. In this work, glycyrrhetinic acid could be obtained by hydrolyzing glycyrrhizic acid to remove glucuronic acid and subsequently extracted by UA-DLLME using chloroform and acetone as the extraction and disperser solvents, respectively. The sample extraction was firstly concentrated to dry under nitrogen and then rapidly derivatized with 2-(12-oxobenzo[b]acridin-5(12H)-yl)-ethyl-4-toluenesulfonate (BAETS) after the UA-DLLME. The prime parameters influencing the UA-DLLME and derivatization procedure were optimized using response surface methodology. Under the optimum conditions, the proposed method has a better linearity in a wider range of 6-300 ng mL<sup>−1</sup> and a high square of correlation coefficient (<i>R</i> <sup>2</sup>) at 0.9994. Limit of detection and limit of quantification were found to be 1.7 ng mL<sup>−1</sup> and 5.8 ng mL<sup>−1</sup>, respectively. The proposed method was applied to the analysis of glycyrrhetinic acid in liquorice, liquorice apricot and sugar plum samples. For the analysis of the spiked samples, the spiked recoveries were in the range of 90.4-103.0 % with RSD less than 5.18 %. All results demonstrated that the UA-DLLME-HPLC-FLD (ultrasound-assisted dispersive liquid-liquid microextraction-high-performance liquid chromatography with fluorescence detection) was a sensitive, accurate, efficient analytical method for the determination of glycyrrhetinic acid.

Pages

  • Page
  • of 3