Displaying 1 - 1 of 1
Theory of mind (ToM) encompasses a range of abilities that show different developmental time courses. However, relatively little work has examined the neural correlates of ToM during early childhood. In this study, we investigated the neural correlates of ToM in typically developing children aged 4–8 years using resting-state functional magnetic resonance imaging. We calculated whole-brain functional connectivity with the right temporo-parietal junction (RTPJ), a core region involved in ToM, and examined its relation to children's early, basic, and advanced components of ToM competence assessed by a parent-report measure. Total ToM and both basic and advanced ToM components, but not early, consistently showed a positive correlation with connectivity between RTPJ and posterior cingulate cortex/precuneus; advanced ToM was also correlated with RTPJ to left TPJ connectivity. However, early and advanced ToM components showed negative correlation with the right inferior/superior parietal lobe, suggesting that RTPJ network differentiation is also related to ToM abilities. We confirmed and extended these results using a Bayesian modeling approach demonstrating significant relations between multiple nodes of the mentalizing network and ToM abilities, with no evidence for differences in relations between ToM components. Our data provide new insights into the neural correlates of multiple aspects of ToM in early childhood and may have implications for both typical and atypical development of ToM.