Skip to main content Skip to search
Displaying 1 - 24 of 24
Meconopsis horridula Hook.f. Thoms has been used as a traditional Tibetan medicine to clear away heat, relieve pain, and mobilize static blood. In this study, a reliable method based on high-performance liquid chromatography with diode array detection and electrospray ionization quadrupole time-of-flight tandem mass spectrometry was established for the identification of components in this herb. A total of 40 compounds (including 17 flavonoids, 15 alkaloids, and eight phenylpropanoids) were identified or tentatively identified. Among them, 17 components were identified in the herb for the first time. Compound 39 appears to be a novel compound, which is confirmed as 3-(kaempferol-8-yl)-2,3-epoxyflavanone by NMR spectroscopy and mass spectrometry. Moreover, seven major constituents were simultaneously quantified by the developed high-performance liquid chromatography with tandem triple-quadrupole mass spectrometry method. The quantitative method was validated and quality parameters were established. The study provides a comprehensive approach for understanding this herbal medicine.

Meconopsis horridula Hook.f. Thoms has been used as a traditional Tibetan medicine to clear away heat, relieve pain, and mobilize static blood. In this study, a reliable method based on high-performance liquid chromatography with diode array detection and electrospray ionization quadrupole time-of-flight tandem mass spectrometry was established for the identification of components in this herb. A total of 40 compounds (including 17 flavonoids, 15 alkaloids, and eight phenylpropanoids) were identified or tentatively identified. Among them, 17 components were identified in the herb for the first time. Compound 39 appears to be a novel compound, which is confirmed as 3-(kaempferol-8-yl)-2,3-epoxyflavanone by NMR spectroscopy and mass spectrometry. Moreover, seven major constituents were simultaneously quantified by the developed high-performance liquid chromatography with tandem triple-quadrupole mass spectrometry method. The quantitative method was validated and quality parameters were established. The study provides a comprehensive approach for understanding this herbal medicine.

The study aims at providing a new suitable way to promote artificial cultivation, solving the problem of resources increasingly endangered wild medicine, and protecting the wild resources of Tibetan medicine. The content of quercetin,kaempferol and isorhamnetin was determined by HPLC. The correlation between flavonoids components and ecological factors was analyzed using partial least-squares regression (PLSR). Based on Maxent model combining using ArcGIS software, suitable regionalization for H.rhamnoides subsp. sinensis was studied.The results showed that the difference of quercetin,kaempferol and isorhamnetin content in samples from different regions were obvious. The main factors effecting quercetin content accumulation were the altitude andthe average monthly precipitation in January and August. The main factors effecting kaempferol accumulation were the altitude andthe average monthly precipitation in the coldest quarter and December. The main factors effecting isorhamnetin accumulation were the average monthly precipitation in August, January and the coldest quarter.The regional distribution suitability index for H.rhamnoides subsp. sinensis was 0-0.708. The suitable area 590 500 km², accounting for 6.13% of the total area. The preferably suitable area was 552 500 km², accounting for 5.73% of the total area.The methods used in the study is simple and feasible, the result is reliable which provide a new approach for Tibetan medicine resources sustainable exploitation and utilization.

In an effort to discover potent VEGFR-2 inhibitors, a series of 2,4 or 4,6-disubstituted <b>O</b>-linked indoles derivatives were designed and synthesized. The structural activity relationships led to identification of a potential VEGFR-2 inhibitor compound <b>18</b>.<br>Inhibition of VEGFR-2 signaling pathway has already become one of the most promising approaches for the treatment of cancer. In this study, we describe the design, synthesis, and biological evaluation of a series of <b>O</b>-linked indoles as potent inhibitors of VEGFR-2. Among these compounds, <b>18</b> showed significant anti-angiogenesis activities <b>via</b> VEGFR-2 in enzymatic proliferation assays, with IC50 value of 3.8 nmol/L. Kinase selectivity profiling revealed that <b>18</b> was a multitargeted inhibitor, and it also exhibited good potency against VEGFR-1, PDGFR-<b>α</b> and <b>β</b>.

AIM: Targeting the VEGF/VEGF receptor (VEGFR) pathway has proved to be an effective antiangiogenic approach for cancer treatment. Here, we identified 6-((2-((3-acetamidophenyl)amino)pyrimidin-4-yl)oxy)-N-phenyl-1-naphthamide (designated herein as DW10075) as a novel and highly selective inhibitor of VEGFRs. METHODS: In vitro tyrosine kinase activity was measured using ELISA, and intracellular signaling pathway proteins were detected by Western blot analysis. Endothelial cell proliferation was examined with CCK-8 assays, and tumor cell proliferation was determined with SRB assays. Cell migration, tube formation and rat aortic ring assays were used to detect antiangiogenic activity. Antitumor efficacy was further evaluated in U87-MG human glioblastoma xenograft tumors in nude mice receiving DW10075 (500 mg · kg(-1) · d(-1), po) for two weeks. RESULTS: Among a panel of 21 kinases tested, DW10075 selectively inhibited VEGFR-1, VEGFR-2 and VEGFR-3 (the IC50 values were 6.4, 0.69 and 5.5 nmol/L, respectively), but did not affect 18 other kinases including FGFR and PDGFR at 10 μmol/L. DW10075 significantly blocked VEGF-induced activation of VEGFR and its downstream signaling transduction in primary human umbilical vein endothelial cells (HUVECs), thus inhibited VEGF-induced HUVEC proliferation. DW10075 (1-100 nmol/L) dose-dependently inhibited VEGF-induced HUVEC migration and tube formation and suppressed angiogenesis in both the rat aortic ring model and the chicken chorioallantoic membrane model. Furthermore, DW10075 exhibited anti-proliferative activity against 22 different human cancer cell lines with IC50 values ranging from 2.2 μmol/L (for U87-MG human glioblastoma cells) to 22.2 μmol/L (for A375 melanoma cells). In U87-MG xenograft tumors in nude mice, oral administration of DW10075 significantly suppressed tumor growth, and reduced the expression of CD31 and Ki67 in the tumor tissues. CONCLUSION: DW10075 is a potent and highly selective inhibitor of VEGFR that deserves further development.

The characteristic fingerprint of conventional dairy Nanhanshuishi was established by X-ray diffraction (XRD), based on similarity of caculation on public peaks by MATLAB software, and the feasibility of new dairy technology of microwave method was explored between XRD and the dissolution rate in artificial simulation gastric juices. The result showed that similarity of shared peak in XRD of conventional dairy Nanhanshuishi was > 95%, This XRD characteristic fingerprint of conventional dairy Nanhanshuishi had strong specificity, could be used to provide a reference for identification and quality evaluation. This study also showed that the similarity of microware dairy products and conventional dairy products was good, and the sample of microwave 15 min was the best, and new dairy method by the microwave could replace the traditional method.

<i>Rheum tanguticum</i> is a widely used Chinese medicinal plant. Recently, because of the great demand, the wild populations have been declining rapidly. In this study, the levels of genetic variation of 11 wild and five cultivated populations of <i>R. tanguticum</i> were investigated by ISSR markers. The 13 selected ISSR primers amplified 306 polymorphic bands out of a total of 326 (93.87 %). Based on Nei’s gene diversity and Shannon’s index, the genetic diversity in cultivated populations of <i>R. tanguticum</i> (<i>H</i> = 0.2490; <i>I</i> = 0.3812; <i>H</i> <sub>B</sub> = 0.3033) was relatively lower than that of wild populations (<i>H</i> = 0.2666; <i>I</i> = 0.4124; <i>H</i> <sub>B</sub> = 0.3115), although no significant differences were identified. Assignment was performed with AFLPOP program, and XGM was the most likely source population of HM. The origins of the rest cultivated populations were admixture. UPGMA and PCoA analyses showed that wild and cultivated populations were not separated into two groups, indicating that a large number of wild genotypes were maintained in the cultivated gene pool. The coefficient of genetic differentiation between wild and cultivated populations was 0.0305 (<i>G</i> <sub>st</sub>), which was in good agreement with the results of analysis of molecular variance (AMOVA), in which, only 1.85 % of the total variance existed between groups of wild and cultivated populations, while 70.91 % occurred within populations and 27.24 % among populations. Together, these results indicated that cultivated populations were not genetically differentiated from wild populations. On the basis of this study, we have made some suggestions for the conservation and efficient management of the genetic resources of this important medicinal herb.

ETHNOPHARMACOLOGICAL RELEVANCE: 'Ershiwuwei Shanhu' pill (ESP), a classical and famous prescription of traditional Tibetan medicine, has a long history of empirical clinical use for the treatment of cerebrovascular and neurological diseases, but the absence of scientific evidence for its effect restricted its clinical application and further development.MATERIALS AND METHODS: The methodology of plasma pharmacochemistry was adopted to analyze the potentially bioactive components in ESP extracts. A method based on UPLC-DAD/Q-TOF-MS was established to identify herb components in ESP extracts and analyze the absorbed components of ESP and their metabolites in rat plasma, brain, heart, liver and kidney samples after oral administration of ESP extracts. RESULTS: A total of 61 herb components were detected and identified in ESP extracts, while 35 absorbed components-including 19 prototype compounds and 16 metabolites-were discovered as potentially bioactive components in rat plasma and tissues by comparative analysis of the UV and MS chromatograms of ESP extracts, blank biosamples and dosed biosamples. CONCLUSIONS: The potentially bioactive components of ESP extracts identified from rat plasma and tissues provide useful information for further study of the pharmacology and mechanism of action of ESP.

‘Ershiwuwei Shanhu’ pill (ESP), a classical and famous prescription of traditional Tibetan medicine, has a long history of empirical clinical use for the treatment of cerebrovascular and neurological diseases, but the absence of scientific evidence for its effect restricted its clinical application and further development. The methodology of plasma pharmacochemistry was adopted to analyze the potentially bioactive components in ESP extracts. A method based on UPLC-DAD/Q-TOF-MS was established to identify herb components in ESP extracts and analyze the absorbed components of ESP and their metabolites in rat plasma, brain, heart, liver and kidney samples after oral administration of ESP extracts. A total of 61 herb components were detected and identified in ESP extracts, while 35 absorbed components—including 19 prototype compounds and 16 metabolites—were discovered as potentially bioactive components in rat plasma and tissues by comparative analysis of the UV and MS chromatograms of ESP extracts, blank biosamples and dosed biosamples. The potentially bioactive components of ESP extracts identified from rat plasma and tissues provide useful information for further study of the pharmacology and mechanism of action of ESP.

Using data for 25,780 species categorized on the International Union for Conservation of Nature Red List, we present an assessment of the status of the world’s vertebrates. One-fifth of species are classified as Threatened, and we show that this figure is increasing: On average, 52 species of mammals, birds, and amphibians move one category closer to extinction each year. However, this overall pattern conceals the impact of conservation successes, and we show that the rate of deterioration would have been at least one-fifth again as much in the absence of these. Nonetheless, current conservation efforts remain insufficient to offset the main drivers of biodiversity loss in these groups: agricultural expansion, logging, overexploitation, and invasive alien species.Though the threat of extinction is increasing, overall declines would have been worse in the absence of conservation. Though the threat of extinction is increasing, overall declines would have been worse in the absence of conservation.

Ischemic stroke is a primary cause of death and long-term disability all over the world. This disease is resulted from ischemia and hypoxia in brain tissues because of insufficient blood supply and causes a series of physiochemical metabolism disorders and physiological dysfunction. Its high disability ratio has bright huge burdens to society, governments and families. However, there is not efficacious medicine to treat it. In this study, a right middle cerebral artery occlusion was established in rats to observe the multi-path and multi-aspect intervention effects of Tibetan patent medicine Ruyi Zhenbao pills in reducing injuries to Nissl bodies, cerebral edema and inflammatory reactions and preventing cellular apoptosis, in order to lay a foundation for defining its therapeutic mechanism in acute ischemic stroke.;

<p>This issue of the journal <em>Materials for Historical Research on Kanlho</em> (Kan lho'i lo rgyus dpyad gzhi'i yig rigs) provides short histories for over 80 Tibetan Buddhist monasteries in Gannan Tibetan Autonomous Prefecture in Gansu Province, China. (Ben Deitle 2009-07-15)</p>

Mindfulness practice is beneficial for emotion regulation; however, the neural mechanisms underlying this effect are poorly understood. The current study focuses on effects of attention-to-breath (ATB) as a basic mindfulness practice on aversive emotions at behavioral and brain levels. A key finding across different emotion regulation strategies is the modulation of amygdala and prefrontal activity. It is unclear how ATB relevant brain areas in the prefrontal cortex integrate with amygdala activation during emotional stimulation. We proposed that, during emotional stimulation, ATB down-regulates activation in the amygdala and increases its integration with prefrontal regions. To address this hypothesis, 26 healthy controls were trained in mindfulness-based attention-to-breath meditation for two weeks and then stimulated with aversive pictures during both attention-to-breath and passive viewing while undergoing fMRI. Data were controlled for breathing frequency. Results indicate that (1) ATB was effective in regulating aversive emotions. (2) Left dorso-medial prefrontal cortex was associated with ATB in general. (3) A fronto-parietal network was additionally recruited during emotional stimulation. (4) ATB down regulated amygdala activation and increased amygdala-prefrontal integration, with such increased integration being associated with mindfulness ability. Results suggest amygdala-dorsal prefrontal cortex integration as a potential neural pathway of emotion regulation by mindfulness practice.

Mindfulness-based cognitive therapy (MBCT) is frequently used for psychiatric disorders. Despite MBCT's considerable potential for improving psychological health for patients, there is little empirical evidence to support its practical application in Chinese. This review will define meditation and mindfulness, provide an overview of the development of MBCT, identify the evidence for the effectiveness of MBCT, and offer recommendations to medical personnels on how to provide support for patients receiving mindfulness intervention.

ObjectiveTo assess the effectiveness of mindfulness-based stress reduction (MBSR) for chronic insomnia and combined depressive or anxiety symptoms of older adults aged 75 years and over. Design A randomized, controlled, single-blind clinical trial. Patients and Methods Participants included 60 adults aged 75 years and over with chronic insomnia. Participants were randomly assigned to the eight-week MBSR group or the wait-list control group. Assessments using the Pittsburgh Sleep Quality Index (PSQI), Self-rating Anxiety Sale (SAS), and Geriatric Depression Scale (GDS) were taken at baseline and post-treatment. For each outcome measure, a repeated measures analysis of variance was used to detect changes across assessments. Results There was a significant time × group interaction for the PSQI global score (P = .006); the MBSR group had a decrease in the PSQI global score (Cohen׳s d = 1.12), while the control group did not (Cohen׳s d = −0.06). Among the PSQI components, there was a significant time × group interaction for daytime dysfunction (P = .048); Cohen׳s d of the MBSR group was 0.76, while Cohen׳s d of control group was −0.04. There was no significant time × group interaction for the SAS score (P = .116), while for the GDS there was a significant time × group interaction (P = .039); the Cohen׳s d value for the MBSR group was 1.20, and it was 0.12 for the control group. Conclusion This study demonstrated that the MBSR program could be a beneficial treatment for chronic insomnia in adults aged 75 years and older.

PURPOSE OF REVIEW: Qigong and Tai Chi are two increasingly popular mind-body interventions with the potential to address the multifaceted needs of cancer survivors. The aim of this updated review and meta-analysis was to quantitatively evaluate the treatment effects of Qigong/Tai Chi on cancer survivors since 2014.RECENT FINDINGS: There were statistically significant and clinically meaningful effects in favor of Qigong/Tai Chi interventions for symptoms of fatigue and sleep quality. There were positive trends, but not statistically significant effects, observed for anxiety, stress, depressive symptoms, and overall quality of life (QOL). Cancer-related cognitive impairment is a common complaint among cancer survivors that has received increasing attention in this area in recent years. Qigong/Tai Chi in cancer care shows great promise with short-term effects in treating many cancer-related symptoms. Further methodologically sound trials with longer follow-up periods and more active control conditions are required, before definitive conclusions can be recommended for cancer patients.

With the development of Tibetan medicine industry, the demands for Tibetan medicine were rising sharply. In addition, with the eco-environment vulnerability of Qinghai-Tibet Plateau region and the phenomenon of synonymies and homonymies in Tibetan medicine, there were a lack of resources and varieties in the clinical application of Tibetan medicine. At present, the shortage of Tibetan medicine and the inadequacy of its quality standard have become the two major problems that seriously restricted the sustainable development of Tibetan medicine industry. Therefore, it is important to develop the resources investigation and quality evaluation for Tibetan medicine, which were contribute to its resources protection and sustainable utilization. In this paper, current status of resources investigation, quality standardization, artificial breeding and germplasm resources of Tibetan medicine were presented by the integrated application of the new technologies, such as DNA barcoding and 1H-NMR, which provided a reference information for resources protection, sustainable utilization, variety identification and quality standardization of Tibetan medicine resources in Qinghai-Tibet Plateau.

BACKGROUND: Oxidative stress is concomitant with acetaminophen (APAP)-induced hepatotoxicity, which has been highlighted as therapeutic targets for such diseases. The berries of Seabuckthorn (Hippophae rhamnoides L.) have been traditionally used in Tibetan medicine for thousands of years. The effect of Seabuckthorn berry polysaccharide on drug- induced liver injury (DILI) has not yet been elucidated.PURPOSE: This study aims to investigate the protective effects and mechanisms of Seabuckthorn polysaccharide (SP) against APAP-induced hepatotoxicity. STUDY DESIGN: Sixty C57BL/6 mice were randomly divided into six groups (n = 10 per group), namely the control group (Ctrl), APAP-induced-liver injury group (APAP), NAC pretreated group (NAC), 100 mg/kg SP pretreated group (APAP/SP100), 200 mg/kg SP pretreated group (APAP/SP200) and 200 mg/kg SP pretreated group without APAP challenge (SP200). SP was given orally to mice for 30 consecutive days prior to APAP exposure (300 mg/kg). NAC (150 mg/kg) was administrated 1 h before APAP challenge. METHODS: ALT and AST were detected 16 h after APAP treatment; Hepatic expression of GSH, SOD, NO, iNOS and GSH-Px were examined. The expression of p-JNK, Bcl-2/Bax, p62, Keap-1 and SOD-2 was detected by Western blotting. The expression of Nrf-2 and its target genes HO-1, GCLC and NQO-1 were analyzed by RT-PCR and Western blotting. RESULTS: Pretreatment with SP led to decreased levels of ALT and AST in APAP mice, without affecting APAP metabolism. This was accompanied by diminished liver injuries, increased levels of GSH and GSH-Px, reduced NO and iNOS expression. SP increased the activity of SOD as well as SOD-2 expression in APAP mice. SP suppressed APAP-induced JNK phosphorylation and increased the ratio of Bcl-2/Bax. Furthermore, SP decreased the expression of Keap-1 and increased the nuclear expression of Nrf-2. The expression of Nrf-2 target gene HO-1 was increased by SP pretreatment in APAP mice. CONCLUSION: SP alleviates APAP-induced hepatotoxicity. The protective effects of SP are associated with the activation of the Nrf-2/HO-1-SOD-2 signaling pathway.

BACKGROUND: Oxidative stress is concomitant with acetaminophen (APAP)-induced hepatotoxicity, which has been highlighted as therapeutic targets for such diseases. The berries of Seabuckthorn (Hippophae rhamnoides L.) have been traditionally used in Tibetan medicine for thousands of years. The effect of Seabuckthorn berry polysaccharide on drug- induced liver injury (DILI) has not yet been elucidated. PURPOSE: This study aims to investigate the protective effects and mechanisms of Seabuckthorn polysaccharide (SP) against APAP-induced hepatotoxicity. STUDY DESIGN: Sixty C57BL/6 mice were randomly divided into six groups (n = 10 per group), namely the control group (Ctrl), APAP-induced-liver injury group (APAP), NAC pretreated group (NAC), 100 mg/kg SP pretreated group (APAP/SP100), 200 mg/kg SP pretreated group (APAP/SP200) and 200 mg/kg SP pretreated group without APAP challenge (SP200). SP was given orally to mice for 30 consecutive days prior to APAP exposure (300 mg/kg). NAC (150 mg/kg) was administrated 1 h before APAP challenge. METHODS: ALT and AST were detected 16 h after APAP treatment; Hepatic expression of GSH, SOD, NO, iNOS and GSH-Px were examined. The expression of p-JNK, Bcl-2/Bax, p62, Keap-1 and SOD-2 was detected by Western blotting. The expression of Nrf-2 and its target genes HO-1, GCLC and NQO-1 were analyzed by RT-PCR and Western blotting. RESULTS: Pretreatment with SP led to decreased levels of ALT and AST in APAP mice, without affecting APAP metabolism. This was accompanied by diminished liver injuries, increased levels of GSH and GSH-Px, reduced NO and iNOS expression. SP increased the activity of SOD as well as SOD-2 expression in APAP mice. SP suppressed APAP-induced JNK phosphorylation and increased the ratio of Bcl-2/Bax. Furthermore, SP decreased the expression of Keap-1 and increased the nuclear expression of Nrf-2. The expression of Nrf-2 target gene HO-1 was increased by SP pretreatment in APAP mice. CONCLUSION: SP alleviates APAP-induced hepatotoxicity. The protective effects of SP are associated with the activation of the Nrf-2/HO-1-SOD-2 signaling pathway.

Context: Standardized myrtol, an essential oil containing primarily cineole, limonene and α-pinene, has been used for treating nasosinusitis, bronchitis and chronic obstructive pulmonary disease (COPD).Objective: To investigate the effects of standardized myrtol in a model of acute lung injury (ALI) induced by lipopolysaccharides (LPS).Materials and methods: Male BALB/c mice were treated with standardized myrtol for 1.5 h prior to exposure of atomized LPS. Six hours after LPS challenge, lung injury was determined by the neutrophil recruitment, cytokine levels and total protein concentration in the bronchoalveolar lavage fluid (BALF) and myeloperoxidase (MPO) activity in the lung tissue. Additionally, pathological changes and NF-κB activation in the lung were examined by haematoxylin and eosin staining and western blot, respectively.Results: In LPS-challenged mice, standardized myrtol at a dose of 1200 mg/kg significantly inhibited the neutrophile counts (from 820.97 ± 142.44 to 280.42 ± 65.45, 103/mL), protein concentration (from 0.331 ± 0.02 to 0.183 ± 0.01, mg/mL) and inflammatory cytokines level (TNF-α: from 6072.70 ± 748.40 to 2317.70 ± 500.14, ng/mL; IL-6: from 1184.85 ± 143.58 to 509.57 ± 133.03, ng/mL) in BALF. Standardized myrtol also attenuated LPS-induced MPO activity (from 0.82 ± 0.04 to 0.48 ± 0.06, U/g) and pathological changes (lung injury score: from 11.67 ± 0.33 to 7.83 ± 0.79) in the lung. Further study demonstrated that standardized myrtol prevented LPS-induced NF-κB activation in lung tissues.Discussion and conclusion: Together, these data suggest that standardized myrtol has the potential to protect against LPS-induced airway inflammation in a model of ALI.

The eco-environment in eastern part of Qinghai-Tibet plateau is a rather complicated complex. The plants species there are quite diverse. The plant resource from Polygonaceae family used in traditional Tibetan medicine is very rich according to preliminary investigation. There were 6 genera and 15 species. The flora and the medicine value of them were analyzed. And some suggestions about traditional Tibetan medicine plant resource exploitation and utilization were presented.

From the whole plant of <i>Morina nepalensis</i> var. <i>alba</i> Hand.-Mazz., two new acylated flavonoid glycosides (<b>1</b> and <b>2</b>), together with four known flavonoid glycosides (<b>3-6</b>), were isolated. Their structures were determined to be quercetin 3-<i>O</i>-[2″′-<i>O</i>-(<i>E</i>)-caffeoyl]-α-L-arabinopyranosyl-(1→6)-β-D-galactopyranoside (monepalin A, <b>1</b>), quercetin 3-<i>O</i>-[2″′-<i>O</i>-(<i>E</i>)-caffeoyl]-α-L-arabinopyranosyl-(1→6)-β-D-glucopyranoside (monepalin B, <b>2</b>), quercetin 3-<i>O</i>-α-L-arabinopyranosyl-(1→6)-β-D-galactopyranoside (rumarin, <b>3</b>), quercetin 3-<i>O</i>-β-D-galactopyranoside (<b>4</b>), quercetin 3-<i>O</i>-β-D-glucopyranoside (<b>5</b>) and apigenin 4<sup>′</sup>-<i>O</i>-β-D-glucopyranoside (<b>6</b>). Their structures were determined on the basis of chemical and spectroscopic evidence. Complete assignments of the ¹H and <sup>13</sup>C NMR spectra of all compounds were achieved from the 2D NMR spectra, including H-H COSY, HMQC, HMBC and 2D HMQC-TOCSY spectra. Copyright © 2002 John Wiley & Sons, Ltd.