Skip to main content Skip to search
Displaying 1 - 2 of 2
The ITS2 barcode was used toidentify Tibetan medicine "Dida", and tosecure its quality and safety in medication. A total of 13 species, 151 experimental samples for the study from the Tibetan Plateau, including Gentianaceae Swertia, Halenia, Gentianopsis, Comastoma, Lomatogonium ITS2 sequences were amplified, and purified PCR products were sequenced. Sequence assembly and consensus sequence generation were performed using the CodonCode Aligner V3.7.1. The Kimura 2-Parameter (K2P) distances were calculated using MEGA 6.0. The neighbor-joining (NJ) phylogenetic trees were constructed. There are 31 haplotypes among 231 bp after alignment of all ITS2 sequence haplotypes, and the average G±C content of 61.40%. The NJ tree strongly supported that every species clustered into their own clade and high identification success rate, except that Swertia bifolia and Swertia wolfangiana could not be distinguished from each other based on the sequence divergences. DNA barcoding could be used as a fast and accurate identification method to distinguish Tibetan medicine "Dida" to ensure its safe use.

DNA barcoding technique in combination with UFLC analysis technology was used to evaluate the quality of Tibetan medicine Pterocephalus hookeri from species identification and chemical qualitative and other aspects. Hybrid identification was established by DNA barcoding; UFLC-PDA was adopted to analyse fingerprint of different parts of Pterocephali Herba, and SPSS and Grey relation software were used for data analysis. The result showed that DNA barcoding is an accurate and reliable method in origin identification of Pterocephalus hookeri. The compounds in overground is more than underground by analysis of the different part fingerprint by UFLC. The genetic gene may be involved in the secondary metabolites of iridoid glycosides. Pertinence between gene and chemical component, as a new model established, could be suited for quality evaluation and resources protection.