Skip to main content Skip to search
Displaying 1 - 4 of 4
With the rapid development of Tibetan medicine industry, the study on plateau medicinal plants' endangered status is not enough, measures to protect is weak and the plateau ecological environment' inherent vulnerability, resulted in the shortage of Tibetan medicinal resources and affect the sustainable development . According to the existing endangered information of Tibetan medicine resources, how to formulate feasible protection plan, is an urgent problem of the rational development and utilization of Tibetan medicine resources to be solved. To find out the endangered Tibetan medicines in Qinghai Tibet Plateau, the Grade division method of Chinese Rare and Endangered Plants was applied, the endangered species were sorted out, which divided into class one (threatened) eleven species, class two (rare) twenty-one species, and class three (fading) forty-two species,a total of seventy-four species.In addition to national protection list in "Chinese rare and endangered plants". It's proposed to increase the endangered Tibetan medicinal species. Finally, according to the endangered status of the resources,from the survey of endangered Tibetan medicinal species regularly, the germplasm repository establishment of endangered Tibetan medicine, in situ conservation, artificial cultivation research and renew the idea, reasonable development and utilization, a total of 5 aspects to discussed the protection strategy, to provide a scientific basis for the protection and sustainable utilization of Tibetan medicine resources in Qinghai-Tibet Plateau.

ETHNOPHARMACOLOGICAL RELEVANCE: Rhodiola crenulata, a traditional Tibetan medicine, has shown promise in the treatment of hypobaric hypoxia (HH)-induced brain injury. However, the underlying mechanisms remain unclear. This study investigated the protective effects of R. crenulata aqueous extract (RCAE) on HH-induced brain injury in rats.MATERIALS AND METHODS: An animal model of high-altitude hypoxic brain injury was established in SD rats using an animal decompression chamber for 24 h. Serum and hippocampus levels of superoxide dismutase (SOD), malondialdehyde (MDA), glutathione (GSH), oxidized glutathione (GSSG), and lactate dehydrogenase (LDH) were then determined using commercial biochemical kits. Neuron morphology and vitality were also evaluated using H&E and Nissl staining, and TUNEL staining was used to examine apoptosis. Gene and protein expression of HIF-1α, microRNA 210, ISCU1/2, COX10, Apaf-1, cleaved Caspase-3, Caspase-3, Bax, Bcl-2, and Cyto-c were determined by western blot, immunohistochemical and qRT-PCR analysis. RESULTS: RCAE administration attenuated HH-induced brain injury as evidenced by decreased levels of MDA, LDH, and GSSG, increased GSH and SOD, improvements in hippocampus histopathological changes, increased cell vitality and ATP level, and reduced apoptotic cell numbers. RCAE treatment also enhanced HIF-1α, ISCU1/2, COX10, and Bcl-2 protein expression, while dramatically inhibiting expression of Apaf-1, Bax, Cyto-c, and cleaved Caspase-3. Treatment also increased gene levels of HIF-1α, microRNA 210, ISCU1/2, and COX10, and decreased Caspase-3 gene production. CONCLUSIONS: RCAE attenuated HH-induced brain injury by regulating apoptosis and mitochondrial energy metabolism via the HIF-1α/microRNA 210/ISCU1/2 (COX10) signaling pathway.

Purpose: To develop an ultra-high performance liquid chromatography (UPLC) - photodiode array (PDA) method to compare the chemical composition of two different medicinal components of Pterocephalus hookeri. Methods: Samples were chromatographically separated in succession using Waters Acquity UPLCR BEH C18 column (2.1 × 100 mm, 1.7 µm) and gradient elution (0.2% phosphoric acid aqueous - acetonitrile). Using partial least squares discriminant analysis and one-way analysis of variance, attempts were made to distinguish different medicinal parts of P. hookeri. Results: Regression equation for 10 compounds showed good linear regression (R² > 0.9994). The relative standard deviations of precision, stability, repeatability and recovery were under 5%. Compared with the aerial plant part, the root had significantly higher levels of sylvestroside I (p < 0.01), cantleyoside (p < 0.001), dipsanosides B (p < 0.01) and dipsanosides A (p < 0.01), but significantly lower levels of loganic acid (p < 0.001), chlorogenic acid (p < 0.01), and isochlorogenic acid (p < 0.01). There were no significant differences between loganin, sweroside and isochlorogenic acid C. Conclusion: The described method is simple, accurate and reproducible, and can be used for the simultaneous determination of 10 major compounds of P. hookeri. The results demonstrate that there is variation in the chemical composition of the aerialpart and root of P. hookeri and that loganic acid and cantleyoside are the primary chemical biomarkers.