Displaying 1 - 9 of 9
Emerging evidences have shown that one form of mental training - mindfulness meditation, can improve attention, emotion Emerging evidences have shown that one form of mental training - mindfulness meditation, can improve attention, emotion regulation and cognitive performance through changing brain activity and structural connectivity. However, whether and how the short-term mindfulness meditation alters large-scale brain networks are not well understood. Here, we applied a novel data-driven technique, the multivariate pattern analysis (MVPA) to resting-state fMRI data to identify changes in brain activity patterns and assess the neural mechanisms induced by a brief mindfulness training - integrative body–mind training (IBMT), which was previously reported in our series of randomized studies. Whole brain resting-state fMRI was performed on an undergraduate group who received 2 weeks of IBMT with 30 min per session (5 h training in total). Classifiers were trained on measures of functional connectivity in this fMRI data, and they were able to reliably differentiate (with 72% accuracy) patterns of connectivity from before vs. after the IBMT training. After training, an increase in positive functional connections (60 connections) were detected, primarily involving bilateral superior/middle occipital gyrus, bilateral frontale operculum, bilateral superior temporal gyrus, right superior temporal pole, bilateral insula, caudate and cerebellum. These results suggest that brief mental training alters the functional connectivity of large-scale brain networks at rest that may involve a portion of the neural circuitry supporting attention, cognitive and affective processing, awareness and sensory integration, and reward processing.
Five days of integrative body-mind training (IBMT) improves attention and self-regulation in comparison with the same amount of relaxation training. This paper explores the underlying mechanisms of this finding. We measured the physiological and brain changes at rest before, during, and after 5 days of IBMT and relaxation training. During and after training, the IBMT group showed significantly better physiological reactions in heart rate, respiratory amplitude and rate, and skin conductance response (SCR) than the relaxation control. Differences in heart rate variability (HRV) and EEG power suggested greater involvement of the autonomic nervous system (ANS) in the IBMT group during and after training. Imaging data demonstrated stronger subgenual and adjacent ventral anterior cingulate cortex (ACC) activity in the IBMT group. Frontal midline ACC theta was correlated with highfrequency HRV, suggesting control by the ACC over parasympathetic activity. These results indicate that after 5 days of training, the IBMT group shows better regulation of the ANS by a ventral midfrontal brain system than does the relaxation group. This changed state probably reflects training in the coordination of body and mind given in the IBMT but not in the control group. These results could be useful in the design of further specific interventions.
Zotero Collections:
Background: One form of meditation intervention, the integrative body-mind training (IBMT) has been shown to improve attention, reduce stress and change self-reports of mood. In this paper we examine whether short-term IBMT can improve performance related to creativity and determine the role that mood may play in such improvement.Methods: Forty Chinese undergraduates were randomly assigned to short-term IBMT group or a relaxation training (RT) control group. Mood and creativity performance were assessed by the Positive and Negative Affect Schedule (PANAS) and Torrance Tests of Creative Thinking (TTCT) questionnaire respectively.
Results: As predicted, the results indicated that short-term (30 min per day for 7 days) IBMT improved creativity performance on the divergent thinking task, and yielded better emotional regulation than RT. In addition, cross-lagged analysis indicated that both positive and negative affect may influence creativity in IBMT group (not RT group).
Conclusions: Our results suggested that emotion-related creativity-promoting mechanism may be attributed to short-term meditation.
Using diffusion tensor imaging, several recent studies have shown that training results in changes in white matter efficiency as measured by fractional anisotropy (FA). In our work, we found that a form of mindfulness meditation, integrative body–mind training (IBMT), improved FA in areas surrounding the anterior cingulate cortex after 4-wk training more than controls given relaxation training. Reductions in radial diffusivity (RD) have been interpreted as improved myelin but reductions in axial diffusivity (AD) involve other mechanisms, such as axonal density. We now report that after 4-wk training with IBMT, both RD and AD decrease accompanied by increased FA, indicating improved efficiency of white matter involves increased myelin as well as other axonal changes. However, 2-wk IBMT reduced AD, but not RD or FA, and improved moods. Our results demonstrate the time-course of white matter neuroplasticity in short-term meditation. This dynamic pattern of white matter change involving the anterior cingulate cortex, a part of the brain network related to self-regulation, could provide a means for intervention to improve or prevent mental disorders.
Zotero Collections:
Many philosophical and contemplative traditions teach that “living in the moment” increases happiness. However, the default mode of humans appears to be that of mind-wandering, which correlates with unhappiness, and with activation in a network of brain areas associated with self-referential processing. We investigated brain activity in experienced meditators and matched meditation-naive controls as they performed several different meditations (Concentration, Loving-Kindness, Choiceless Awareness). We found that the main nodes of the default-mode network (medial prefrontal and posterior cingulate cortices) were relatively deactivated in experienced meditators across all meditation types. Furthermore, functional connectivity analysis revealed stronger coupling in experienced meditators between the posterior cingulate, dorsal anterior cingulate, and dorsolateral prefrontal cortices (regions previously implicated in self-monitoring and cognitive control), both at baseline and during meditation. Our findings demonstrate differences in the default-mode network that are consistent with decreased mind-wandering. As such, these provide a unique understanding of possible neural mechanisms of meditation.
Zotero Collections:
Although the study of brain states is an old one in neuroscience, there has been growing interest in brain state specification owing to MRI studies tracing brain connectivity at rest. In this review, we summarize recent research on three relatively well-described brain states: the resting, alert, and meditation states. We explore the neural correlates of maintaining a state or switching between states, and argue that the anterior cingulate cortex and striatum play a critical role in state maintenance, whereas the insula has a major role in switching between states. Brain state may serve as a predictor of performance in a variety of perceptual, memory, and problem solving tasks. Thus, understanding brain states is critical for understanding human performance.
Zotero Collections:
The anterior cingulate cortex (ACC) is part of a network implicated in the development of self-regulation and whose connectivity changes dramatically in development. In previous studies we showed that 3 h of mental training, based on traditional Chinese medicine (integrative body–mind training, IBMT), increases ACC activity and improves self-regulation. However, it is not known whether changes in white matter connectivity can result from small amounts of mental training. We here report that 11 h of IBMT increases fractional anisotropy (FA), an index indicating the integrity and efficiency of white matter in the corona radiata, an important white-matter tract connecting the ACC to other structures. Thus IBMT could provide a means for improving self-regulation and perhaps reducing or preventing various mental disorders.
Zotero Collections:
Zotero Collections:
Mindfulness neuroscience is an emerging research field that investigates the underlying mechanisms of different mindfulness practices, different stages and different states of practice as well as different effects of practice over the lifespan. Mindfulness neuroscience research integrates theory and methods from eastern contemplative traditions, western psychology and neuroscience, and from neuroimaging techniques, physiological measures and behavioral tests. We here review several key theoretical and methodological challenges in the empirical study of mindfulness neuroscience and provide suggestions for overcoming these challenges.
Zotero Collections: