Skip to main content Skip to search
Displaying 1 - 13 of 13
Neck pain and headaches are the two most common symptoms of whiplash. The working hypothesis is that pain originates from excessive motions in the upper and lower cervical segments. The research design used an intact human cadaver head-neck complex as an experimental model. The intact head-neck preparation was fixed at the thoracic end with the head unconstrained. Retroreflective targets were placed on the mastoid process, anterior regions of the vertebral bodies, and lateral masses at every spinal level. Whiplash loading was delivered using a mini-sled pendulum device. A six-axis load cell and an accelerometer were attached to the inferior fixation of the specimen. High-speed video cameras were used to obtain the kinematics. During the initial stages of loading, a transient decoupling of the head occurs with respect to the neck exhibiting a lag of the cranium. The upper cervical spine-head undergoes local flexion concomitant with a lag of the head while the lower column is in local extension. This establishes a reverse curvature to the head-neck complex. With continuing application of whiplash loading, the inertia of the head catches up with the neck. Later, the entire head-neck complex is under an extension mode with a single extension curvature. The lower cervical facet joint kinematics demonstrates varying local compression and sliding. While the anterior- and posterior-most regions of the facet joint slide, the posterior-most region of the joint compresses more than the anterior-most region. These varying kinematics at the two ends of the facet joint result in a pinching mechanism. Excessive flexion of the posterior upper cervical regions can be correlated to headaches. The pinching mechanism of the facet joints can be correlated to neck pain. The kinematics of the soft tissue-related structures explain the mechanism of these common whiplash associated disorders.

This paper presents a survey of side impact trauma-related biomedical investigations with specific reference to certain aspects of epidemiology relating to the growing elderly population, improvements in technology such as side airbags geared toward occupant safety, and development of injury criteria. The first part is devoted to the involvement of the elderly by identifying variables contributing to injury including impact severity, human factors, and national and international field data. This is followed by a survey of various experimental models used in the development of injury criteria and tolerance limits. The effects of fragility of the elderly coupled with physiological changes (e.g., visual, musculoskeletal) that may lead to an abnormal seating position (termed out-of-position) especially for the driving population are discussed. Fundamental biomechanical parameters such as thoracic, abdominal and pelvic forces; upper and lower spinal and sacrum accelerations; and upper, middle and lower chest deflections under various initial impacting conditions are evaluated. Secondary variables such as the thoracic trauma index and pelvic acceleration (currently adopted in the United States Federal Motor Vehicle Safety Standards), peak chest deflection, and viscous criteria are also included in the survey. The importance of performing research studies with specific focus on out-of-position scenarios of the elderly and using the most commonly available torso side airbag as the initial contacting condition in lateral impacts for occupant injury assessment is emphasized.

STUDY DESIGN: This study determined bone mineral density (BMD) of cervical, thoracic, and lumbar vertebrae in healthy asymptomatic human subjects. OBJECTIVES: To test the hypothesis that BMD of neck vertebrae (C2-C7) is equivalent to BMD of lumbar vertebrae (L2-L4). SUMMARY OF BACKGROUND DATA: BMD of lumbar vertebrae is correlated to their strength. Although numerous studies exist quantifying BMD of the human lumbar spine, such information for the cervical spine is extremely limited. In addition, BMD correlations are not established between the two regions of the spinal column. METHODS: Adult healthy human female volunteers with ages ranging from 18 to 40 years underwent quantitative computed tomography (CT) scanning of the neck and back. All BMD data were statistically analyzed using paired nonrepeating measures ANOVA techniques. Significance was assigned at a P < 0.05. Linear regression analyses were used to compare BMD as a function of level and region; +/-95% confidence intervals were determined. RESULTS: When data were grouped by cervical (C2-C7), thoracic (T1), and lumbar (L2-L4) spines, mean BMD was 260.8 +/- 42.5, 206.9 +/- 33.5, and 179.7 +/- 23.4 mg/mL. Average BMD of cervical vertebrae was higher than (P < 0.0001) thoracic and lumbar spines. Correlations between BMD and level indicated the lowest r value for T1 (0.42); in general, the association was the strongest in the lumbar spine (r = 0.89-0.95). The cervical spine also responded with good correlations among cervical vertebrae (r ranging from 0.66 to 0.87). CONCLUSIONS: The present study failed to support the hypothesis that BMD of lumbar spine vertebrae is equivalent to its cranial counterparts. The lack of differences in BMD among the three lumbar vertebral bodies confirms the appropriateness of using L2, L3, or L4 in clinical or biomechanical situations. However, significant differences were found among different regions of the vertebral column, with the cervical spine demonstrating higher trabecular densities than the thoracic and lumbar spines. In addition, the present study found statistically significant variations in densities even among neck vertebrae.

PURPOSE: The purpose of this study was to determine injuries to osteo-ligamentous structures of cervical column, mechanisms, forces, severities and AIS scores from vertical accelerative loading. METHODS: Seven human cadaver head-neck complexes (56.9 +/- 9.5 years) were aligned based on seated the posture of military soldiers. Army combat helmets were used. Specimens were attached to a vertical accelerator to apply caudo-cephalad g-forces. They were accelerated with increasing insults. Intermittent palpation and radiography were done. A roof structure mimicking military vehicle interior was introduced after a series of tests and experiments were conducted following similar protocols. Upon injury detection, CT and dissection were done. Temporal force responses were extracted, peak forces and times of occurrence were obtained, injury severities were graded, and spine stability was determined. RESULTS: Injuries occurred in tests only when the roof structure was included. Responses were tri-phasic: initial thrust, secondary tensile, tertiary roof contact phases. Peak forces: 1364-4382 N, initial thrust, 165-169 N, secondary tensile, 868-3368 N tertiary helmet-head roof contact phases. Times of attainments: 5.3-9.6, 31.7-42.6, 55.0-70.8 ms. Injuries included fractures and joint disruptions. Multiple injuries occurred in all but one specimen. A majority of injury severities were AIS = 2. Spines were considered unstable in a majority of cases. CONCLUSIONS: Spine response was tri-phasic. Injuries occurred in roof contact tests with the helmeted head-neck specimen. Multiplicity and unstable nature of AIS = 2 level injuries, albeit at lower severities, might predispose the spine to long-term accelerated degenerative changes. Clinical protocols should include a careful evaluation of sub-catastrophic injuries in military patients.

BACKGROUND: While cervical spine injury biomechanics reviews in motor vehicle and sports environments are available, there is a paucity of studies in military loadings. This article presents an analysis on the biomechanics and applications of cervical spine injury research with an emphasis on human tolerance for underbody blast loadings in the military. METHODS: Following a brief review of published military studies on the occurrence and identification of field trauma, postmortem human subject investigations are described using whole body, intact head-neck complex, osteo-ligamentous cervical spine with head, subaxial cervical column, and isolated segments subjected to differing types of dynamic loadings (electrohydraulic and pendulum impact devices, free-fall drops). FINDINGS: Spine injuries have shown an increasing trend over the years, explosive devices are one of the primary causal agents and trauma is attributed to vertical loads. Injuries, mechanisms and tolerances are discussed under these loads. Probability-based injury risk curves are included based on loading rate, direction and age. INTERPRETATION: A unique advantage of human cadaver tests is the ability to obtain fundamental data to delineate injury biomechanics and establish human tolerance and injury criteria. Definitions of tolerances of the spine under vertical loads based on injuries have implications in clinical and biomechanical applications. Primary outputs such as forces and moments can be used to derive secondary variables such as the neck injury criterion. Implications are discussed for designing anthropomorphic test devices that may be used to predict injuries in underbody blast environments and improve the safety of military personnel.

A majority of laboratory-driven side-impact injury assessments are conducted using postmortem human subjects (PMHS) under the pure lateral mode. Because real-world injuries occur under pure and oblique modes, this study was designed to determine chest deflections and injuries using PMHS under the latter mode. Anthropometrical data were obtained and x-rays were taken. Specimens were seated on a sled and lateral impact acceleration corresponding to a change in velocity of 24 km/h was applied such that the vector was at an angle of 20 or 30 degrees. Chestbands were fixed at the level of the axilla (upper), xyphoid process (middle), and tenth rib (lower) location. Deflection contours as a function of time at the levels of the axilla and mid-sternum, representing the thorax, and at the tenth rib level, representing the abdomen, were evaluated for peak magnitudes. All data were normalized using mass-scaling procedures. Injuries were identified following the test at autopsy. Trauma graded according to the Abbreviated Injury Score, 1990 version, indicated primarily unilateral rib fractures and soft tissue abnormalities such as lung contusion and diaphragm laceration occurred. Mean peak deflections at the upper, middle, and lower levels of the chest for the 30-degree tests were 96.2, 78.5, and 76.8 mm. For the 20-degree tests, these magnitudes were 77.5, 89.9, and 73.6 mm. Statistical analysis indicated no significant (p > 0.05) differences in peak chest deflections at all levels between the two obliquities although the metric was significantly greater in oblique than pure lateral impacts at the mid and lower thoracic levels. These response data are valuable in oblique lateral impact assessments.

BACKGROUND: Whereas considerable literature exists on the wounding mechanics of high velocity projectiles in the military domain, there is a paucity of such data from projectiles routinely encountered in the civilian population in the United States. This study was undertaken to develop a methodology and to determine the dynamics of penetrating trauma secondary to low velocity projectiles (200-300 m/sec). To demonstrate the feasibility of the methodology and the experimental protocol, two markedly different projectiles were chosen in the study. METHODS: Two projectiles were discharged into a human tissue simulant; one projectile was smooth and the other was of the expansion type. High-speed video photographic analysis and synchronized trigger techniques were used to describe the path of the projectile during its travel within the simulant. The temporal transient and residual profiles demonstrating the "wound involvement" were computed. RESULTS: Results indicated a stark contrast between the two cases. There was a ratio of approximately three-to-one in the maximum wound involvement due to penetration. Transient wave oscillations during penetration and perforation of the projectile from the tissue simulant demonstrated significant differences in amplitudes and time durations. In addition, the residual wound involvement profiles indicated differences in the injury potential. CONCLUSIONS: This study has provided an experimental methodology to delineate the temporal dynamic behavior of penetrating projectiles. To fully quantify and differentiate the dynamic differences in the temporal behaviors of the numerous available projectiles (with various combinations in design, type of equipment, and discharge), further research in this area is clearly necessary. The present protocol lends itself to be used to systematically analyze all these behaviors. Quantified data may assist clinical personnel in the management of penetrating trauma.

Although studies have been conducted in the past to duplicate traumatic fractures of the os calcis, biomechanical force data as a function of extra- and intra-articular fractures are not available. Consequently, in this study, a dynamic single impact model was used to provide such information. Using intact human cadaver lower extremities, impact loading was applied to the plantar surface of the foot using a mini-sled pendulum equipment. The proximal tibia was fixed in polymethylmethacrylate. Following impact, pathology to the os calcis was classified into intact (no injury; 14 cases), and extra-articular (6 cases) and intra-articular (6 cases) fractures. Peak dynamic forces were used to conduct statistical analysis. Mean forces for the intact and (both) fracture groups were 4144 N (standard error, SE: 689) and 7802 N (SE: 597). Mean forces for the extra- and intra-articular fracture groups were 7445 N (SE: 711) and 8159 N (SE: 1006). The peak force influenced injury outcome (ANOVA, p<0.005). Differences in the forces were found between intact and injured specimens (p<0.01); intact specimens and specimens with extra-articular pathology (p<0.001); intact specimens and specimens with intra-articular pathology (p<0.005). The present experimental protocol, which successfully reproduced clinically relevant os calcis pathology, can be extended to accommodate other variables such as the simulation of Achilles tendon force, the inclusion of other angles of force application, and the application of the impact force to limited regions of the plantar force of the foot in order to study other injury mechanisms.

Numerous studies have been conducted since more than fifty years to understand the behavior of the human lumbar spine under fatigue loading. Applications have been largely driven by low back pain and human body vibration problems. The human neck also sustains fatigue loading in certain type of civilian occupational and military operational activities, and research is very limited in this area. Being a visco-elastic structure, it is important to determine the stress-relaxation properties of the human cervical spine intervertebral discs to enable accurate simulations of these structures in stress-analysis models. While finite element models have the ability to incorporate viscoelastic material definitions, data specific to the cervical spine are limited. The present study was conducted to determine these properties and understand the responses of the human lower cervical spine discs under large number of cyclic loads in the axial compression mode. Eight disc segments consisting of the adjacent vertebral bodies along with the longitudinal ligaments were subjected to compression, followed by 10,000 cycles of loading at 2 or 4Hz frequency by limiting the axial load to approximately 150 N, and subsequent to resting period, subjected to compression to extract the stress-relaxation properties using the quasi-linear viscoelastic (QLV) material model. The coefficients of the model and disc displacements as a function of cycles and loading frequency are presented. The disc responses demonstrated a plateauing effect after the first 2000 to 4000 cycles, which were highly nonlinear. The paper compares these responses with the "work hardening" phenomenon proposed in clinical literature for the lumbar spine to explain the fatigue behavior of the discs. The quantitative results in terms of QLV coefficients can serve as inputs to complex finite element models of the cervical spine to delineate the local and internal load-sharing responses of the disc segment.

This study was conducted to provide force and acceleration corridors at different velocities describing the dynamic biomechanics of the lateral region of the human head. Temporo-parietal impact tests were conducted using specimens from ten unembalmed post-mortem human subjects. The specimens were isolated at the occipital condyle level, and pre-test x-ray and computed tomography images were obtained. They were prepared with multiple triaxial accelerometers and subjected to increasing velocities (up to 7.7 m/s) using free-fall techniques by impacting onto a force plate from which forces were recorded. A 40-durometer padding (50-mm thickness) material covering the force plate served as the impacting boundary condition. Computed tomography images obtained following the final impact test were used to identify pathology. Four specimens sustained skull fractures. Peak force, displacement, acceleration, energy, and head injury criterion variables were used to describe the dynamic biomechanics. Force and acceleration responses obtained from this experimental study along with other data will be of value in validating finite element models. The study underscored the need to enhance the sample size to derive probability-based human tolerance to side impacts.

BACKGROUND: Aging, trauma, or degeneration can affect intervertebral kinematics. While in vivo studies can determine motions, moments are not easily quantified. Previous in vitro studies on the cervical spine have largely used specimens from older individuals with varying levels of degeneration and have shown that moment-rotation responses under lateral bending do not vary significantly by spinal level. The objective of the present in vitro biomechanical study was, therefore, to determine the coronal and axial moment-rotation responses of degeneration-free, normal, intact human cadaveric cervicothoracic spinal columns under the lateral bending mode. METHODS: Nine human cadaveric cervical columns from C2 to T1 were fixed at both ends. The donors had ranged from twenty-three to forty-four years old (mean, thirty-four years) at the time of death. Retroreflective targets were inserted into each vertebra to obtain rotational kinematics in the coronal and axial planes. The specimens were subjected to pure lateral bending moment with use of established techniques. The range-of-motion and neutral zone metrics for the coronal and axial rotation components were determined at each level of the spinal column and were evaluated statistically. RESULTS: Statistical analysis indicated that the two metrics were level-dependent (p 0.95). CONCLUSIONS: Range-of-motion metrics compared favorably with those of in vivo investigations. Coronal and axial motions of degeneration-free cervical spinal columns under lateral bending showed substantially different level-dependent responses. The presentation of moment-rotation corridors for both metrics forms a normative dataset for the degeneration-free cervical spines.

Sled tests were conducted at a velocity of 6.7 m/s using side impact dummies (SID, BioSID, ES-2, and WorldSIDp) and the resulting biomechanical responses were compared with responses from post mortem human subjects (PMHS). Initial impact conditions were with and without pelvic offset in combination with and without padding on the impacting wall. Impact forces, thoracic trauma index, chest compression, and viscous criteria were evaluated. The probability of injury was estimated and rates of deformation were computed for each body region. Dummy responses were not always similar in terms of trend and injury criteria when compared with PMHS tests under the same initial conditions. Response variations will be of value in improving the biofidelity characteristics of dummies for crashworthiness evaluations.

The objective of this study was to determine the bone mineral density (BMD) of cervical vertebrae and correlate with the lumbar spine. Fifty-seven young adult healthy male volunteers, ranging from 18 to 41 years of age, underwent quantitative computed tomography (QCT) scanning of C2-T1 and L2-L4 vertebrae. To account for correlations, repeated measures techniques were used to compare data as a function of spinal level and region. Linear regression methods were used (+/-95% CI) to compare data as a function of spinal level and region. The mean age and body height were 25.0 +/- 5.8 years and 181.0 +/- 7.6 cm. BMD decreased from the rostral to caudal direction along the spinal column. Grouped data indicated that the neck is the densest followed by the first thoracic vertebra and low back with mean BMD of 256.0 +/- 48.1, 194.3 +/- 44.2, and 172.2 +/- 28.4 mg/cm(3), respectively; differences were statistically significant. While BMD did not vary significantly between the three lumbar bodies, neck vertebrae demonstrated significant trends. The matrix of correlation coefficients between BMD and spinal level indicated that the relationship is strong in the lumbar (r = 0.92-0.96) and cervical (r = 0.73-0.92) spines. Data from the present study show that the trabecular bony architecture of the neck is significantly different from the low back. These quantitative BMD data from a controlled young adult healthy human male volunteer population may be valuable in establishing normative data specifically for the neck. From a trabecular bone density perspective, these results indicate that lumbar vertebrae cannot act as the best surrogates for neck vertebrae. Significant variations in densities among neck vertebrae, unlike the low back counterpart, may underscore the need to treat these bones as different structures.