Skip to main content Skip to search
Displaying 1 - 25 of 88

Pages

  • Page
  • of 4
Phytochemical studies on the whole herb of Sphaerophysa salsula has resulted in the discovery of one new 8-isopentenyl isoflavone derivative, named sphaerosin s2 (3-(8-(2-hydroxypropan-2-yl)-3,4-dihydro-2H-furo[2,3-h]chromen-3-yl)-2,6-dimethoxyphenol) (1), along with four know 8-isopentenyl isoflavone derivatives (2-5). Compounds (2, 4 and 5) were isolated for the first time from this species. Their structures were elucidated on the basis of ESI-MS, UV, IR, 1D NMR and 2D NMR data.

Meconopsis horridula is one of alpine plants belonging to family Papaveraceae, mainly distributed in Himalaya Range area. M. horridula is a rare alpine flower, and is a kind of traditional Tibetan medicine, which has been included in more than 40 compound formulae, having efficacies of clearing away heat and alleviating pain, activating blood circulation to remove stasis, traditionally used for the treatment of fractures, injuries, and chest and back pains. Modern research shows that the whole plant of M. horridula contains alkaloids, flavonoids, and terpenes, and its pharmacological activities including antitumor, antivirus and myocardial protection etc. However, due to various factors, the current research of M.horridula still faces many challenges. This paper summaries herein a progress of MH on its ecological resources, traditional uses, and studies on chemical constituents and pharmacological effects, hopefully to provide a useful reference for the ecological protection and applications.

Urban green spaces provide an array of benefits, or ecosystem services, that support our physical, psychological, and social health. In many cases, however, these benefits are not equitably distributed across diverse urban populations. In this paper, we explore relationships between cultural ecosystem services provided by urban green space and the social determinants of health outlined in the United States Healthy People 2020 initiative. Specifically, we: (1) explore connections between cultural ecosystem services and social determinants of health; (2) examine cultural ecosystem services as nature-based health amenities to promote social equity; and (3) recommend areas for future research examining links between urban green space and public health within the context of environmental justice.

OBJECTIVES: The hepatoprotective effect of Gentianae macrophyllae root extract (GME) on alcoholic liver disease (ALD) was evaluated through ethanol induced ALD animal model.METHODS: Mice were randomly divided into control normal group (10 mice), ethanol-induced ALD model group (10 mice) and GME plus ethanol group (30 mice). Mice in model group were given intragastric administration with 50% (v/v) ethanol aqueous solution (200 μl for each) once daily for 19 days. Mice in control normal group received equal volumes of water. Mice in GME plus ethanol group were given intragastric administration with 50% (v/v) ethanol aqueous solution (200 μl for each) once daily at 10:00 a.m., after 1 h, mice in GME group sequentially were treated with 20, 40 and 100 mg/kg of GME by gastric gavage for 19 days. the average food and water consumed by the mice in every group were recorded every 2 days and body weight of every mouse in every group was measured every 2 days. KEY FINDINGS: Results showed that GME significantly improved alcohol induced liver injury in a dose-dependent manner. The impaired hepatic tissue structure was repaired and the collagen deposition declined after GME administration. Meanwhile, the level of malonaldehyde (MDA), Aspartate transaminase (AST) and alanine transaminase (ALT) (indicators of liver damage) in blood serum were significantly controlled by GME with a dose-dependent manner, moreover, body weight and liver index were also improved after administration of GME. Pro-inflammatory cytokines including MCP-1, TNF-α, IL-1 and IL-6 were detected through RT-PCR and ELISA in experiment and GME can significantly inhibit the expression of TNF-α, IL-1 and IL-6 but have no effect on MCP-1. In order to explore the mechanism of GME on ALD, MAPKs pathway was examined and results indicated that GME attenuated ALD through inhibiting the phosphorylation of JNK and P38 and further suppressing the initiation of inflammation. CONCLUSIONS: GME attenuated ALD through inhibiting the phosphorylation of JNK and P38 and further suppressing the initiation of inflammation.

Background: Hypecoum leptocarpum Hook. f. et Thoms., which is used in traditional Tibetan medicine as an antipyretic, antitussive, analgesic, and anti-inflammatory agent, contains a variety of alkaloids that could be responsible for its analgesic and anti-inflammatory properties. Objective: The present study was designed to investigate the anti-inflammatory activity of the total alkaloids from H. leptocarpum (AHL) in vitro and to elucidate the chemical structure of the anti-inflammatory components in AHL. Materials and Methods: Chemical characterization was performed using liquid chromatography/quadrupole-time-of-flight mass and diode-array detector-high performance liquid chromatography. The anti-inflammatory effects of AHL were investigated by measuring the production of inflammatory cytokines using enzyme-linked immunosorbent assay and mRNA expression by real-time polymerase chain reaction in lipopolysaccharide-induced RAW 264.7 macrophages. Results: Chemical analysis of AHL revealed the presence of seven alkaloids, protopine (13.3%), cryptopine (1.5%), leptopidinine, leptocarpine, corydamine, dihydroleptopine, and oxohydrastinine. AHL significantly suppressed the production of nitric oxide (NO), interleukin-1 beta (IL-1 β), IL-6, and tumor necrosis factor-alpha (TNF-α) in LPS-induced RAW 264.7 cells. The maximum levels of suppression of NO, IL-1 β, IL-6, and TNF-α were 86.8% ± 2.2%, 70.1% ± 1.5%, 100.1% ± 2.5%, and 50.8% ± 3.6%, respectively. IC50values of suppression of cytokine production by AHL were 7.47 ± 2.81 μg/mL (NO), 0.12 ± 0.28 μg/mL (IL-1 β), 0.56 ± 0.37 μg/mL (IL-6), and 18.95 ± 5.23 μg/mL (TNF-α). AHL was also shown to downregulate mRNA expression of inducible NO synthase, IL-1 β, IL-6, and TNF-α in vitro. Conclusion: The study provides convincing evidence that AHL has strong anti-inflammatory activity. The potent activity is likely a result of synergy between the different alkaloids. Abbreviations used: The total alkaloids from H. leptocarpum: AHL; Nitric oxide: NO; Interleukin-1 beta IL-1β; Interleukin-6: IL-6; Tumor necrosis factor-alpha: TNF-α; Prostaglandin E2: PGE2; Inducible nitric oxide synthase: iNOS; Nonsteroidal anti-inflammatory drugs: NSAIDs; lipopolysaccharide: LPS; The total ion chromatograms: TIC; The liquid chromatography/quadrupole-time of flight: LC/Q-TOF; Nuclear factor-kappa B: NF-κB; Janus kinase-signal transducers and activators of transcription: JAK-STAT. [ABSTRACT FROM AUTHOR]

• <b>Saxifraga tangutica</b> Engl. is a promising source of antioxidants against DPPH and FRAP. • The 50% ethanol extract of S. <b>tangutica</b> showed strong antioxidative activity against DPPH and FRAP. • Eight phenols were isolated from S. <b>tangutica</b>; all of the compounds are reported for the first time from this plant. • The antioxidative S. <b>tangutica</b> extracts and isolated phenols supports the antioxidant of this plant.<br><b>Saxifraga tangutica</b> Engl., is a medicinal herb that grows on the Qinghai-Tibet Plateau. Extracts and phenols from the Qinghai population have been subjected to antioxidative assays against DPPH radical-scavenging and reducing power (FRAP). The 50% ethanol extract showed strong antioxidative activity against DPPH and FRAP, with IC50 ± SEM [μg/mL] values of 9.38 ± 0.46 and 15.46 ± 0.52, respectively. The antioxidative activity-guided fractionations were performed according to the DPPH and FRAP screening results. Fourteen fractions from the 50% ethanol extract showed dissimilar antioxidative activity against DPPH and FRAP of 8.16 ± 0.76 ∼ 38.42 ± 0.58 μg/mL and 13.22 ± 0.68 ∼ 61.47 ± 0.49 μg/mL. The chemical assay-guided separation of the active fractions (fractions 3, 6, 7 and 8) led to eight phenols: protocatechuic aldehyde (<b>1</b>), ethyl gallate (<b>2</b>), rhododendrin (<b>3</b>), <b>p</b>-hydroxyacetophenone (<b>4</b>), rhododendrol (<b>5</b>), protocatechuic acid ethyl ester (<b>6</b>), frambinone (<b>7</b>) and ethylparaben (<b>8</b>). All phenols are reported here for the first time from <b>S. tangutica</b> Engl. Protocatechuic aldehyde (<b>1</b>), ethyl gallate (<b>2</b>), rhododendrin (<b>3</b>) and protocatechuic acid ethyl ester (<b>6</b>) showed strong antioxidative activities (IC50 ± SEM [mM] between 8.79 ± 0.15 and 4.25 ± 0.47 and between 6.15 ± 0.48 and 2.83 ± 0.49) against DPPH and FRAP.

The actinomycetes strain, lut0910, was isolated from polluted soil and identified as the Rhodococcus species with 99% similarity based on the sequence analysis of 16S recombinant DNA. The extract of this strain demonstrated in vivo and in vitro antitumor activity. The treatment of two human cancer cell lines, hepatocellular carcinoma HepG2 and cervical carcinoma Hela cells, with the lut0910 extract caused the delay in cell propagation in a dose-dependent manner with an IC50 of 73.39 and 33.09 µg/mL, respectively. Also, the oral administration of lut0910 extract to the mice with a solid tumor resulted in the inhibition of tumor growth in comparison with a placebo group. The thymus and spleen indexes were significantly increased in mice groups treated with the lut0910 extract. The histopathological changes of the tumor tissues showed that there were massive necrotic areas in the tumor tissues after treatment with different doses of the lut0910 extract. Our result would provide a new way and potent source for development of new anticancer agent from the polluted environment.

Zuota is regarded as the king of Tibetan medicine. However, due to the confidentiality of this precious medicine, the scientific characterization of Zuota is very scarce, which limits the pharmacology and biosafety studies of Zuota. Herein, we collected four different Zuota samples from Tibet, Qinghai, Gansu, and Sichuan and characterized them by multiple techniques. Our results showed that Zuota was mainly an inorganic mixture of HgS, sulfur, and graphite. Morphologically, Zuota samples were composed of nanoparticles, which further aggregated into microsized particles. Chemically, the majorities of Zuota were S and Hg (in the forms of HgS and pure sulfur). All samples contained pure sulfur with orthorhombic crystalline. Zuota from Qinghai province had different HgS crystalline, namely, hexagonal crystalline. The others were all face-centered cubic crystalline. Carbon in Zuota NPs was in the form of graphite. The implication to future studies of Zuota was discussed.

Zuota is regarded as the king of Tibetan medicine. However, due to the confidentiality of this precious medicine, the scientific characterization of Zuota is very scarce, which limits the pharmacology and biosafety studies of Zuota. Herein, we collected four different Zuota samples from Tibet, Qinghai, Gansu, and Sichuan and characterized them by multiple techniques. Our results showed that Zuota was mainly an inorganic mixture of HgS, sulfur, and graphite. Morphologically, Zuota samples were composed of nanoparticles, which further aggregated into microsized particles. Chemically, the majorities of Zuota were S and Hg (in the forms of HgS and pure sulfur). All samples contained pure sulfur with orthorhombic crystalline. Zuota from Qinghai province had different HgS crystalline, namely, hexagonal crystalline. The others were all face-centered cubic crystalline. Carbon in Zuota NPs was in the form of graphite. The implication to future studies of Zuota was discussed.

The essential oil of Tibetan medicine Dracocephalum heterophyllum Benth was obtained by hydrodistillation with a 0.7% (v/w) yield. The chemical composition of the essential oil was analyzed by gas chromatography-mass spectral (GC-MS). Eighty-three compounds, constituting about 89.83% of the total oil, were identified. The main compound in the oil were Cineole (14.89%), trans-nerolido (7.10%), 1-m-ethyl-2-(1-methylethyl)-benzene (4.42%), Germacrene-D (4.84%), Decahydro-1,1,4,7-tetramethyl-4aH-cycloprop[e]azulen-4a-ol (4.94%), p-menth-1-en-4-ol,acetate (4.34%), 4-methyl-1-(1-methylethyl)-3-cyclohexen-1-ol (4.10%). The antimicrobial activity of the oil was evaluated against nine bacterial, one yeast, and three fungi. The antimicrobial test result showed that the essential oil strongly inhibited the growth of test microorganisms studied. The maximal inhibition zones and MIC values for bacterial, yeast and fungi strain were in the range of 18-25 mm and 0.039-0.156 mg mL(-1); *20 mm, and 0.156 mg mL(-1); 8-24 mm and 0.313-2.5 mg mL(-1); respectively. The antioxidant activity of the oil was determined by the malonyldialdehyde (MDA) test, measuring the MDA concentration in mouse liver cell microsomal after induced lipid peroxidation using FeSO(4) and ascorbic acid, The inhibition of lipid peroxidation was 59.3% with a concentration of 0.5 mg mL(-1). Result presented here may suggest that the essential oil of D. heterophyllum posses antimicrobial and antioxidant properties, and therefore, they can be one of new medicinal resources for antimicrobial agent and/or used as a natural preservative ingredient in food and cosmetics and pharmaceuticals industry.

The essential oil of Tibetan medicine Dracocephalum heterophyllum Benth was obtained by hydrodistillation with a 0.7% (v/w) yield. The chemical composition of the essential oil was analyzed by gas chromatography-mass spectral (GC-MS). Eighty-three compounds, constituting about 89.83% of the total oil, were identified. The main compound in the oil were Cineole (14.89%), trans-nerolido (7.10%), 1-m-ethyl-2-(1-methylethyl)-benzene (4.42%), Germacrene-D (4.84%), Decahydro-1,1,4,7-tetramethyl-4aH-cycloprop[e]azulen-4a-ol (4.94%), p-menth-1-en-4-ol,acetate (4.34%), 4-methyl-1-(1-methylethyl)-3-cyclohexen-1-ol (4.10%). The antimicrobial activity of the oil was evaluated against nine bacterial, one yeast, and three fungi. The antimicrobial test result showed that the essential oil strongly inhibited the growth of test microorganisms studied. The maximal inhibition zones and MIC values for bacterial, yeast and fungi strain were in the range of 18-25 mm and 0.039-0.156 mg mL(-1); *20 mm, and 0.156 mg mL(-1); 8-24 mm and 0.313-2.5 mg mL(-1); respectively. The antioxidant activity of the oil was determined by the malonyldialdehyde (MDA) test, measuring the MDA concentration in mouse liver cell microsomal after induced lipid peroxidation using FeSO(4) and ascorbic acid, The inhibition of lipid peroxidation was 59.3% with a concentration of 0.5 mg mL(-1). Result presented here may suggest that the essential oil of D. heterophyllum posses antimicrobial and antioxidant properties, and therefore, they can be one of new medicinal resources for antimicrobial agent and/or used as a natural preservative ingredient in food and cosmetics and pharmaceuticals industry.

Objective: To investigate the chemical constituent from the roots of Gentiana straminea.; Methods: The constituents were separated by microporous resin,silica gel,Sephadex LH-20 and preparative column chromatography and their structures were elucidated by NMR and MS spectral methods.; Results: Twelve chemical constituents were isolated from the roots of Gentiana straminea and their structures were identified as daucosterol( 1),β-sitosterol( 2),ursolic acid( 3),sweroside( 4),swertiamarin( 5),gentiopicroside( 6),6’-O-acetyl-gentiopicroside( 7),6’-O-β-D-glucopyranosyl-sweroside( 8),protocatech uic aldehyde( 9),protocatechuic acid( 10),methyl gallate( 11) and dibutyl phthalate( 12).; Conclusion: The compounds 8,9,10,11 and 12 are obtained from this plant for the first time.;

Nine alkaloids and two phenolic glycosides were isolated from EtOH extract of the whole plants of Corydalis hendersonii by various chromatographic techniques including silica gel, ODS, Sephadex LH-20, and semi-preparative HPLC. Their structures were identified as groenlandicine (1), berberine (2), protopine (3), cryptopine (4), N-trans-feruloyloctopamine(5), 3-(4-hydroxy-3-methoxyphenyl)-N-[2-(4-hydroxyphenyl)-2-methoxyethyl] acrylamide (6), N-cis-p-coumaroyloctopamine (7), N-trans-p-coumaroylnoradrenline (8),N-cis-feruloyloctopamine (9), apocynin (10), and glucoacetosyringone (11) by the spectroscopic data analysis and comparison with those in the literature. Among them, compounds 10 and 11 were isolated from this genus for the first time, and 1, 2, and 5-9 were isolated from the species for the first time. All isolates were tested for their protection for in vitro PC12 cell line and antiplatelet aggregation activity. The results showed that compounds 5 and 7 displayed protective effects at a concentration of 10 μmol·L⁻¹, and compound 2 showed antiplatelet aggregation activity induced by THR, ADP, and AA, and compound 3 exhibted inhibitory effect induced by THR.; Copyright© by the Chinese Pharmaceutical Association.

A phytochemical investigation on the aerial parts of a Tibetan medicine Meconopsis horridula, by solvent extraction, repeated chromatographies on silica gel, Sephadex LH-20, and preparative TLC techniques, led to the isolation of 9 compounds. By spectroscopic analysis and comparison of its 1H and 13C-NMR data with those in literatures, their structures were identified as oleracein E(1), N-( trans-p-coumaroyl) tyramine (2), chrysoeriol (3), apigenin (4), hydnocarpin (5), p-coumaric acid glucosyl ester (6), stigmast-5-ene-3beta-ylformate (7), 3beta-hydroxy-7alpha-ethoxy-24beta-ethylcholest-5-ene (8), and beta-sitosterol (9), respectively, among which compounds 6-8 were isolated from the genus for the first time,and 1,3 were isolated from the species for the first time. A MTT method was applied to evaluate the cytotoxic activity of compounds 14 against the human hepatocellular liver carcinoma cell line (HepG2), and compound 1 showed significant cytotoxicity against HepG2,with its inhibitory rate of 52.2% at 10 micromol x L(-1).;

A phytochemical investigation of <b>Saxifraga tangutica</b> led to the isolation of 11 compounds, including eight diarylheptanoids (<b>1</b>-<b>6</b>, <b>10</b> and <b>11</b>) and three phenylpropanoids (<b>7</b>-<b>9</b>). The chemical structures were established by extensive analysis of their MS and NMR spectroscopic data or comparison with literature data. In the present research, we report the isolated compounds <b>1</b>-<b>11</b>, for the first time, in the species <b>S. tangutica</b>. Moreover, compounds <b>1</b>, <b>2</b> and <b>4</b>-<b>11</b> have not been reported from any species in Saxifragaceae family. Furthermore, we discuss the chemotaxonomic significance of the isolated compounds.<br>• Eight diarylheptanoids and three phenylpropanoids have been isolated from <b>Saxifraga tangutica.</b> • Compounds <b>1</b>-<b>11</b> are firstly reported in the species <b>Saxifraga tangutica.</b> • Compounds <b>1</b>, <b>2</b> and <b>4</b>-<b>11</b> are firstly isolated from genus <b>Saxifraga</b> or family Saxifragaceae.

In this article the classics textual research to the origin of "Zha-xun" was carried out, the ethnobotanical research methods, the origin of visits, key informant interviews, sample collection and textual research were applied in the research. The results showed that the hypothesis of Zha-xun"s origin mainly included "source of mine", "source of feces", "source of monkey menstrual blood" in China. There were "source of fossil", "source of the plant secretion" abroad. The authors had interviewed the villagers at origin, herbalists, Tibetan doctors, herb dealers, foreign scholars for a total of 18 people, and collecting 45 batches medicinal materials. According to ancient Tibetan classics textual and Tibetan medicine doctors' views, medicinal materials were divided into the genuine and the substitutes. The genuine was identified as ancient so-called "iron" type "Zha-xun", and the substitute was fecal pellet bonding briquette. According to the field survey and literature research, "source of fossil" more in line with substance of Zha-xun was derived from the rock. As the results, the author believed that Zha-xun was the mixture of organic fossils from the rock seepage with flying squirrel, pika feces. So it is needed to be set up Zha-xun classification standard to evaluate the quality of medicinal materials. Meanwhile, it was necessary to further clarify fecal pellet substitute rationality. Above all, this article clarified the status of the use of Tibetan medicine-"Zha-xun", and laid the foundation of species systematics and quality standards research of "Zha-xun".

[Objectives] By clustering analysis of tissue distribution data of brucine and strychnine in gastric ulcer model rat, the impact of Zuota on tissue distribution of basic components was studied. [Methods] Based on system clustering method of SPSS19.0 statistical analysis software, using inter-group join method and squared Euclidean distance, brucine and strychnine contents of different tissues and organs in non- Zuota group and Zuota group were taken as characteristic variables for clustering analysis, and phylogenetic tree was established. [Results] When clustering distance was 1, (i) taking brucine content as the index, there were three kinds of convergences in non-Zuota group. A1 class: skin, liver, epididymitis and jejunum; A2 class: brain and uterus; A class: testis and muscle. Brucine contents of the three classes showed a A1 < A2 < A. There were two classes of convergences in Zuota group. B1 class : jejunum, epididymis, kidney, brain, skin and uterus; B2 class: muscle and (bottom) submandibular gland. Brucine contents of the two classes showed as B1 < B2. (ii) Taing strychnine content as the index, there were three classes of convergences in non-Zuota group. C1 class: muscle, testicle and oarrum; C2 class: heart and lung; C3 class: uterus and liver. Strychnine contents of the three classes showed a C3 <C1 < C2. There were two kinds of convergences in Zuota group. D1 class : kidney and heart; D2 class : brain tissue and uterus. Strychnine contents of the two classes showed as D1 > D2. [Conclusions] When clustering distance was 1, low-content tissues and orgas firstly clustered, and its toxicological eefect(or pharmacodynamic action)was insignificant, and this kind of tissues and organs were relatively safe. A1 class and A2 class in Zuota group were merged into B1 class, in which liver was replaced by kidney. It iilustrated that Zuota could decline the toxicity of kidney, and enlarged the safe action range of brucine. Kidney and heart in C2 class were clustered into D1 class, and average strychnine content in C2 class was higher than that of D1 class. It could be deduced that Zuota had the effect of protecting heat.

Four novel lactams, colletotrilactam A-D (1-4), along with six known compounds (5-10) were isolated from the culture broth of Colletotrichum gloeosporioides GT-7, a fungal endophyte of Uncaria rhynchophylla. The structures of these compounds were elucidated by comprehensive NMR spectroscopy. Isolates were tested for monoamine oxidase (MAO) inhibitory activity and compound 9 showed potent MAO inhibitory activity with IC50 value of 8.93±0.34μg/mL, when the IC50 value of iproniazid as a standard was 1.80±0.5μg/mL.

The figwort genus <i>Scrophularia</i> L. (Scrophulariaceae) comprises 200-300 species and is widespread throughout the temperate Northern Hemisphere. Due to reticulate evolution resulting from hybridization and polyploidization, the taxonomy and phylogeny of <i>Scrophularia</i> is notoriously challenging. Here we report the complete chloroplast (cp) genome sequences of <i>S. henryi</i> Hemsl. and <i>S. dentata</i> Royle ex Benth. and compare them with those of <i>S. takesimensis</i> Nakai and <i>S. buergeriana</i> Miq. The <i>Scrophularia</i> cp genomes ranged from 152 425 to 153 631 bp in length. Each cp genome contained 113 unigenes, consisting of 78 protein-coding genes, 31 transfer RNA genes, and 4 ribosomal RNA genes. Gene order, gene content, AT content and IR/SC boundary structure were nearly identical among them. Nine cpDNA markers (<i>trnH-psbA</i>, <i>rps15</i>, <i>rps18-rpl20</i>, <i>rpl32-trnL</i>, <i>trnS-trnG</i>, <i>ycf15-trnL</i>, <i>rps4-trnT</i>, <i>ndhF-rpl32</i>, and <i>rps16-trnQ</i>) with more than 2% variable sites were identified. Our phylogenetic analyses including 55 genera from Lamiales strongly supported a sister relationship between ((Bignoniaceae + Verbenaceae) + Pedaliaceae) and (Acanthaceae + Lentibulariaceae). Within Scrophulariaceae, a topology of (<i>S. dentata</i> + (<i>S. takesimensis</i> + (<i>S. buergeriana</i> + <i>S. henryi</i>))) was strongly supported. The crown age of Lamiales was estimated to be 85.1 Ma (95% highest posterior density, 70.6-99.8 Ma). The higher core Lamiales originated at 65.6 Ma (95% highest posterior density, 51.4-79.4 Ma), with a subsequent radiation that occurred in the Paleocene (between 55.4 and 62.3 Ma) and gave birth to the diversified families. Our study provides a robust phylogeny and a temporal framework for further investigation of the evolution of Lamiales.

The comparative study of bloodletting therapy between traditional Chinese medicine and Tibetan medicine in view of history development, theoretic basis, bloodletting location, bloodletting tool, operation method, bloodletting amount, indications, contraindications and the others are conducted in this paper. It is pointed out that the bloodletting therapy could be better carried forward and developed through the interaction and integration of bloodletting therapy between traditional Chinese medicine and Tibetan medicine in term of the theoretic, practical and development patterns under the guidance of these two different medical theoretical systems.

Compound Phyllanthus urinaria L (CP) is a traditional formula widely used in clinical practice for hepatocellular carcinoma (HCC), especially HBV-related HCC. HBx, HBV X gene encoded X protein, has positive correlation with the abnormal SHH pathway in HBV-related HCC. So, we predicted that CP has the capability of anti-HBV-related HCC maybe via inactivating the HBx-Hedgehog pathway axis. HepG2-HBx cells, HBx overexpression, were treated with CP (70μg/ml and 35 μg/ml, respectively) for 48 hours and the mice which received the HepG2-HBx cells were treated with CP (625mg/kg and 300 mg/kg, respectively) for 17 days to evaluate the effect of CP on HBV-related HCC. HBx could accelerate HepG2 cells proliferation, clone formation, and migration in vitro and also could strengthen tumor growth in mice. However, CP could significantly decrease HepG2-HBx cells proliferation, clone formation, and migration in vitro and also could inhibit tumors growth in mice in a dose-dependent manner. Mechanism studies suggested that HBx upregulated the mRNA and proteins expression of Sonic hedgehog (SHH), transmembrane receptor patched (PTCH-1), smoothened (SMO), oncogene homolog transcription factors-1 (GLI-1), and oncogene homolog transcription factors-2 (GLI-2), which are compositions of the SHH pathway. CP could inhibit the mRNA and proteins expression of SHH, PTCH-1, GLI-1, and HBx. It may be one of the underlying mechanisms of CP to delay the HBV-related HCC development through the HBx-SHH pathway axis inactivation. [ABSTRACT FROM AUTHOR]

OBJECTIVE: To further investigate and discuss the cause of species endangerment, the status and present problem of conservation of traditional Tibetan medicine in China.METHOD: Previous relevant investigations and literatures were summed up in the field. The present situation of conservation of traditional Tibetan medicine was analyzed. RESULT: The status of endangered resources, cause of species endangerment, the conserving status and conserving measures etc were elaborated. The classification was made and suggestion of species conservation of traditional Tibetan medicine were put forward. CONCLUSION: The endangered species conservation of traditional Tibetan medicine was carried out by building protective area of endangered species resources and plant garden, setting up germplasm bank, developing the domestication and cultivation of Tibetan medicinal herbs most in use, strengthening the investigation and study of endangered species, launching exchange and cooperation of conservation techniques on endangered species, enhancing the protective awareness of endangered species traditional Tibetan medicine etc. By so doing we can facilitate the sustainable development of traditional Tibetan medicine in China.

Pages

  • Page
  • of 4