Skip to main content Skip to search
Displaying 1 - 2 of 2
Zuota is regarded as the king of Tibetan medicine. However, due to the confidentiality of this precious medicine, the scientific characterization of Zuota is very scarce, which limits the pharmacology and biosafety studies of Zuota. Herein, we collected four different Zuota samples from Tibet, Qinghai, Gansu, and Sichuan and characterized them by multiple techniques. Our results showed that Zuota was mainly an inorganic mixture of HgS, sulfur, and graphite. Morphologically, Zuota samples were composed of nanoparticles, which further aggregated into microsized particles. Chemically, the majorities of Zuota were S and Hg (in the forms of HgS and pure sulfur). All samples contained pure sulfur with orthorhombic crystalline. Zuota from Qinghai province had different HgS crystalline, namely, hexagonal crystalline. The others were all face-centered cubic crystalline. Carbon in Zuota NPs was in the form of graphite. The implication to future studies of Zuota was discussed.

A sensitive and inexpensive method involving ultrasound-assisted dispersive liquid-liquid microextraction (UA-DLLME) and pre-column derivatization followed by high-performance liquid chromatography with fluorescence detection (HPLC-FLD) was developed for the analysis of glycyrrhetinic acid. In this work, glycyrrhetinic acid could be obtained by hydrolyzing glycyrrhizic acid to remove glucuronic acid and subsequently extracted by UA-DLLME using chloroform and acetone as the extraction and disperser solvents, respectively. The sample extraction was firstly concentrated to dry under nitrogen and then rapidly derivatized with 2-(12-oxobenzo[b]acridin-5(12H)-yl)-ethyl-4-toluenesulfonate (BAETS) after the UA-DLLME. The prime parameters influencing the UA-DLLME and derivatization procedure were optimized using response surface methodology. Under the optimum conditions, the proposed method has a better linearity in a wider range of 6-300 ng mL<sup>−1</sup> and a high square of correlation coefficient (<i>R</i> <sup>2</sup>) at 0.9994. Limit of detection and limit of quantification were found to be 1.7 ng mL<sup>−1</sup> and 5.8 ng mL<sup>−1</sup>, respectively. The proposed method was applied to the analysis of glycyrrhetinic acid in liquorice, liquorice apricot and sugar plum samples. For the analysis of the spiked samples, the spiked recoveries were in the range of 90.4-103.0 % with RSD less than 5.18 %. All results demonstrated that the UA-DLLME-HPLC-FLD (ultrasound-assisted dispersive liquid-liquid microextraction-high-performance liquid chromatography with fluorescence detection) was a sensitive, accurate, efficient analytical method for the determination of glycyrrhetinic acid.