Skip to main content Skip to search
Displaying 1 - 4 of 4
The Tibetan folk medicine Qinjiao is traditionally used to treat various conditions, and its main active constituents comprise four iridoid glycosides, i.e., loganic acid, swertiamarin, gentiopicroside, and sweroside. The traditional crude medicine Qinjiao is derived from the dried roots of three species belonging to Gentiana sect. Cruciata (Gentianaceae) growing in the Qinghai-Tibetan Plateau (QTP). In this study, we determined by HPLC the contents of the four main active constituents in the dried roots collected from 83 localities at different altitudes across the QTP. The material was classified under the seven taxonomic species G. straminea, G. dahurica, G. crassicaulis, G. waltonii, G. officinalis, G. ihassica, and G. macrophylla. Our results suggested that the four constituents were present in the roots of all seven species for all localities, but their concentrations varied greatly within and between species. The level of gentiopicroside revealed to be the most dominant for all examined localities (2.1-12.4 mg/g), and G. macrophylla Pall. contained the highest concentration of all the four constituents at the species level. Except for loganic acid in G. officinalis, there was no significant correlation between the contents of these constituents and the altitude of the sampling localities. These results suggest that all species of all origins can be used as reliable resource for the crude medicine Qinjiao. However, a few species contain higher concentrations of the main active constituents, irrespective of their origin.;

To achieve a high yield of tropane alkaloids (TA) and exploit the alpine plant sustainably, an optimized protocol for induction and establishment of hairy roots culture of <i>Prezwalskia tangutica</i> Maxim was developed through selection of appropriate <i>Agrobacterium</i> strain and the explant type. The hypocotyl is more readily facile to induce the HR than the cotyledon is when infected with the three different agrobacterium strains. MUS440 has an efficiency (of up to 20%), whereas the ATCC10060 (A4) can induce HR on both types of explants with the highest frequency (33.33%), root length (21.17 ± 2.84 cm), and root number (10.83 ± 1.43) per explant than the other strains. The highest HR production resulted from using hypocotyl as explants. Independent transformed HR was able to grow vigorously and to propagate on a no-hormone 1/2MS liquid medium. The presence of pRi <i>rol</i>B gene in transformation of HR was confirmed by PCR amplification. In the liquid medium, the HR growth curve appeared to be “S” shaped, and ADB had increased to 4.633 g/l. Moreover, HPLC analysis showed that HR lines have an extraordinary ability to produce atropine (229.88 mg/100 g), anisodine (4.09 mg/100 g), anisodamine (12.85 mg/100 g), and scopolamine (10.69 mg/100 g), which were all more significant than the control roots. In conclusion, our study optimized the culture condition and established a feasible genetics reactor for <i>P. tangutica</i> green exploration and biological study in the alpine region.

Gentiana straminea is a popular Tibetan medicine that has been used for thousands of years in China to treat various diseases and conditions. Although it has multiple pharmaceutical purposes and important economic plant resource in China, transcriptome and molecular base still known limited. In flowering season, samples were collected from different tissues, using the NGS Illumina. Solexa platform, about 58.85 million sequencing reads were generated and assembled de novo, yielding 78,764 high quality unigenes with an average length of 1090bp. Gene Ontology (GO), KEGG pathway mapping showed that 49,033 of these were identified as putative homologs of annotated sequences in the protein databases. Among them, candidate genes associated with iridoid, flavonoid and anthocyanin were identified. Further the key enzymes involved to iridoid and flavonoid synthesis pathway were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) on different tissues, the flower and root had the higher expression than leaves. In addition, 7591 SSR markers were identified from the unigenes of the G. straminea transcriptome. The foundation of G. straminea provided the important resource for facilitating to study molecular and functional genomics of it and related this species on the Qinghai-Tibet Plateau.

<i>Gentiana straminea</i> is the famous Tibetan folk medicine thought to cure various diseases. Historically, the Qinghai-Tibetan region has been considered as the geo-authentic production area of “Mahua Jiao,” where large quantities of the medicine are grown. However, there is still little known about the phytochemical constituent spatial variation of this species. In order to find the differences between the main phytochemical constituents of <i>G. straminea</i> and to provide comprehensive information for quality evaluation, four main bioactive compounds (loganic acid, swertiamarin, gentiopicroside and sweroside) were analysed in 26 populations grown in areas with elevations ranging from 2320 to 4720 m across the Qinghai-Tibetan Plateau. The results showed that the four phytochemical constitutes’ concentrations varied greatly in the spatial profiling of the Qinghai-Tibetan region. Throughout the range of distribution of this species, no altitudinal, latitudinal or longitudinal trends have proven to be significant in any of the four constitutes’ concentrations or their summation. Furthermore, hierarchical clustering analysis and statistical tests showed that four populations (Liu0609-18, Liu0609-15, Liu2006-13-9 and Liu0609-22) had total constitute contents that were higher than other populations. The spatial profiling of the four phytochemical constituents suggests that the geo-authentic producing area of this species exists at a few regions within the Qinghai province, which could be attributed to specific environmental or genetic factors.