Displaying 1 - 1 of 1
Abstract Ethnopharmacological relevance Zuotai (gTso thal) has a long history in the treatment of cardiovascular disease, liver and bile diseases, spleen and stomach diseases as a precious adjuvant in Tibetan medicine. However, Zuotai is a mercury preparation that contains 54.5% HgS. Its application has always been controversial. Aim of the study To evaluate the toxicological effects of Zuotai in hepatocytes and in zebrafish. Materials and methods MTT was used to determine the survival rate of hepatocytes; Hoechst and TUNEL staining were used to detect the apoptosis cells; Western blot and RT-qPCR assay were used to determine the expression levels of the protein and mRNA; Liver morphology observation and H&E staining were used to evaluate the hepatotoxicity of Zuotai in Zebfrafish. Results The survival rate of L-02 cells, HepG2 cells and RBL-2A cells reduced by Zuotai (10−4–0.1 mg/mL) in a dose and time-dependent manner. Zuotai (0.1 mg/mL) induced HepG2 cells shrinkage, condensation and fragmentation and increased the number of apoptosis cells. The protein expression levels of cleaved Caspase-3 and Bax were increased and the expression levels of Bcl-2 were reduced after HepG2 cells exposed to Zuotai (10−4–0.1 mg/mL) for 24 h. In addition, Zuotai (0.2 mg/mL) induced the darker liver color of the larval zebrafish and changed the liver morphologic of adult zebrafish. Zuotai (0.2 mg/mL) also increased the mRNA levels of CYP1A1, CYP1B1 and MT-1 in the liver of adult zebrafish. However, no significantly hepatotoxicity was observed after hepatocytes and zebrafish exposed to HgS at the same dose. Conclusions Results showed that Zuotai induced hepatotoxicity effectively under a certain dose but its hepatotoxicity likely occurs via other mechanisms that did not depend on HgS. Graphical abstract Zuotai, a clinical adjuvant in Tibetan medicine, contains 54.5% HgS, which can induce apoptosis of liver cells and liver injury in zebrafish. However, HgS, the principal component of Zuotai did not exhibit hepatotoxicity at the same dose. fx1 [ABSTRACT FROM AUTHOR]