Skip to main content Skip to search
Displaying 76 - 100 of 128

Pages

  • Page
  • of 6
OBJECTIVES: This study investigated the relationships between a mindfulness-based stress reduction meditation program for early stage breast and prostate cancer patients and quality of life, mood states, stress symptoms, lymphocyte counts, and cytokine production. METHODS: Forty-nine patients with breast cancer and 10 with prostate cancer participated in an 8-week MBSR program that incorporated relaxation, meditation, gentle yoga, and daily home practice. Demographic and health behavior variables, quality of life (EORTC QLQ C-30), mood (POMS), stress (SOSI), and counts of NK, NKT, B, T total, T helper, and T cytotoxic cells, as well as NK and T cell production of TNF, IFN-γ, IL-4, and IL-10 were assessed pre- and postintervention. RESULTS: Fifty-nine and 42 patients were assessed pre- and postintervention, respectively. Significant improvements were seen in overall quality of life, symptoms of stress, and sleep quality. Although there were no significant changes in the overall number of lymphocytes or cell subsets, T cell production of IL-4 increased and IFN-γ decreased, whereas NK cell production of IL-10 decreased. These results are consistent with a shift in immune profile from one associated with depressive symptoms to a more normal profile. CONCLUSIONS: MBSR participation was associated with enhanced quality of life and decreased stress symptoms in breast and prostate cancer patients. This study is also the first to show changes in cancer-related cytokine production associated with program participation.

<p>Mindfulness-based approaches are among the most innovative and interesting new approaches to mental health treatment. Mindfulness refers to patients developing an "awareness of present experience with acceptance." Interest in them is widespread, with presentations and workshops drawing large audiences all over the US and many other countries. This book provides a comprehensive introduction to the best-researched mindfulness-based treatments. It emphasizes detailed clinical illustration providing a close-up view of how these treatments are conducted, the skills required of therapists, and how they work. The book also has a solid foundation in theory and research and shows clearly how these treatments can be understood using accepted psychological principles and concepts. The evidence base for these treatments is concisely reviewed.* Comprehensive introduction to the best-researched mindfulness-based treatments* Covers wide range of problems &amp; disorders (anxiety, depression, eating, psychosis, personality disorders, stress, pain, relationship problems, etc)* Discusses a wide range of populations (children, adolescents, older adults, couples)* Includes wide range of settings (outpatient, inpatient, medical, mental health, workplace)* Clinically rich, illustrative case study in every chapter* International perspectives represented (authors from US, Canada, Britain, Sweden)</p>

Studies have suggested that the default mode network is active during mind wandering, which is often experienced intermittently during sustained attention tasks. Conversely, an anticorrelated task-positive network is thought to subserve various forms of attentional processing. Understanding how these two systems work together is central for understanding many forms of optimal and sub-optimal task performance. Here we present a basic model of naturalistic cognitive fluctuations between mind wandering and attentional states derived from the practice of focused attention meditation. This model proposes four intervals in a cognitive cycle: mind wandering, awareness of mind wandering, shifting of attention, and sustained attention. People who train in this style of meditation cultivate their abilities to monitor cognitive processes related to attention and distraction, making them well suited to report on these mental events. Fourteen meditation practitioners performed breath-focused meditation while undergoing fMRI scanning. When participants realized their mind had wandered, they pressed a button and returned their focus to the breath. The four intervals above were then constructed around these button presses. We hypothesized that periods of mind wandering would be associated with default mode activity, whereas cognitive processes engaged during awareness of mind wandering, shifting of attention and sustained attention would engage attentional subnetworks. Analyses revealed activity in brain regions associated with the default mode during mind wandering, and in salience network regions during awareness of mind wandering. Elements of the executive network were active during shifting and sustained attention. Furthermore, activations during these cognitive phases were modulated by lifetime meditation experience. These findings support and extend theories about cognitive correlates of distributed brain networks.

Studies have suggested that the default mode network is active during mind wandering, which is often experienced intermittently during sustained attention tasks. Conversely, an anticorrelated task-positive network is thought to subserve various forms of attentional processing. Understanding how these two systems work together is central for understanding many forms of optimal and sub-optimal task performance. Here we present a basic model of naturalistic cognitive fluctuations between mind wandering and attentional states derived from the practice of focused attention meditation. This model proposes four intervals in a cognitive cycle: mind wandering, awareness of mind wandering, shifting of attention, and sustained attention. People who train in this style of meditation cultivate their abilities to monitor cognitive processes related to attention and distraction, making them well suited to report on these mental events. Fourteen meditation practitioners performed breath-focused meditation while undergoing fMRI scanning. When participants realized their mind had wandered, they pressed a button and returned their focus to the breath. The four intervals above were then constructed around these button presses. We hypothesized that periods of mind wandering would be associated with default mode activity, whereas cognitive processes engaged during awareness of mind wandering, shifting of attention and sustained attention would engage attentional subnetworks. Analyses revealed activity in brain regions associated with the default mode during mind wandering, and in salience network regions during awareness of mind wandering. Elements of the executive network were active during shifting and sustained attention. Furthermore, activations during these cognitive phases were modulated by lifetime meditation experience. These findings support and extend theories about cognitive correlates of distributed brain networks.
Zotero Collections:

Lesion and neuroimaging studies suggest the amygdala is important in the perception and production of negative emotion; however, the effects of emotion regulation on the amygdalar response to negative stimuli remain unknown. Using event-related fMRI, we tested the hypothesis that voluntary modulation of negative emotion is associated with changes in neural activity within the amygdala. Negative and neutral pictures were presented with instructions to either "maintain" the emotional response or "passively view" the picture without regulating the emotion. Each picture presentation was followed by a delay, after which subjects indicated how they currently felt via a response keypad. Consistent with previous reports, greater signal change was observed in the amygdala during the presentation of negative compared to neutral pictures. No significant effect of instruction was found during the picture presentation component of the trial. However, a prolonged increase in signal change was observed in the amygdala when subjects maintained the negative emotional response during the delay following negative picture offset. This increase in amygdalar signal due to the active maintenance of negative emotion was significantly correlated with subjects' self-reported dispositional levels of negative affect. These results suggest that consciously evoked cognitive mechanisms that alter the emotional response of the subject operate, at least in part, by altering the degree of neural activity within the amygdala.
Zotero Collections:

The impact of using motion estimates as covariates of no interest was examined in general linear modeling (GLM) of both block design and rapid event-related functional magnetic resonance imaging (fMRI) data. The purpose of motion correction is to identify and eliminate artifacts caused by task-correlated motion while maximizing sensitivity to true activations. To optimize this process, a combination of motion correction approaches was applied to data from 33 subjects performing both a block-design and an event-related fMRI experiment, including analysis: (1) without motion correction; (2) with motion correction alone; (3) with motion-corrected data and motion covariates included in the GLM; and (4) with non-motion-corrected data and motion covariates included in the GLM. Inclusion of covariates was found to be generally useful for increasing the sensitivity of GLM results in the analysis of event-related data. When motion parameters were included in the GLM for event-related data, it made little difference if motion correction was actually applied to the data. For the block design, inclusion of motion covariates had a deleterious impact on GLM sensitivity when even moderate correlation existed between motion and the experimental design. Based on these results, we present a general strategy for block designs, event-related designs, and hybrid designs to identify and eliminate probable motion artifacts while maximizing sensitivity to true activations.
Zotero Collections:

<p>Recent studies have shown that the presence of a caring relational partner can attenuate neural responses to threat. Here we report reanalyzed data from Coan, Schaefer, and Davidson ( 2006 ), investigating the role of relational mutuality in the neural response to threat. Mutuality reflects the degree to which couple members show mutual interest in the sharing of internal feelings, thoughts, aspirations, and joys - a vital form of responsiveness in attachment relationships. We predicted that wives who were high (versus low) in perceived mutuality, and who attended the study session with their husbands, would show reduced neural threat reactivity in response to mild electric shocks. We also explored whether this effect would depend on physical contact (hand-holding). As predicted, we observed that higher mutuality scores corresponded with decreased neural threat responding in the right dorsolateral prefrontal cortex and supplementary motor cortex. These effects were independent of hand-holding condition. These findings suggest that higher perceived mutuality corresponds with decreased self-regulatory effort and attenuated preparatory motor activity in response to threat cues, even in the absence of direct physical contact with social resources.</p>
Zotero Collections:

Anxiety is a debilitating symptom of many psychiatric disorders including generalized anxiety disorder, mood disorders, schizophrenia, and autism. Anxiety involves changes in both central and peripheral biology, yet extant functional imaging studies have focused exclusively on the brain. Here we show, using functional brain and cardiac imaging in sequential brain and cardiac magnetic resonance imaging (MRI) sessions in response to cues that predict either threat (a possible shock) or safety (no possibility of shock), that MR signal change in the amygdala and the prefrontal and insula cortices predicts cardiac contractility to the threat of shock. Participants with greater MR signal change in these regions show increased cardiac contractility to the threat versus safety condition, a measure of the sympathetic nervous system contribution to the myocardium. These findings demonstrate robust neural-cardiac coupling during induced anxiety and indicate that individuals with greater activation in brain regions identified with aversive emotion show larger magnitude cardiac contractility increases to threat.
Zotero Collections:

Asthma, like many inflammatory disorders, is affected by psychological stress, suggesting that reciprocal modulation may occur between peripheral factors regulating inflammation and central neural circuitry underlying emotion and stress reactivity. Despite suggestions that emotional factors may modulate processes of inflammation in asthma and, conversely, that peripheral inflammatory signals influence the brain, the neural circuitry involved remains elusive. Here we show, using functional magnetic resonance imaging, that activity in the anterior cingulate cortex and insula to asthma-relevant emotional, compared with valence-neutral stimuli, is associated with markers of inflammation and airway obstruction in asthmatic subjects exposed to antigen. This activation accounts for > or =40% of the variance in the peripheral markers and suggests a neural basis for emotion-induced modulation of airway disease in asthma. The anterior cingulate cortex and insula have been implicated in the affective evaluation of sensory stimulation, regulation of homeostatic responses, and visceral perception. In individuals with asthma and other stress-related conditions, these brain regions may be hyperresponsive to disease-specific emotional and afferent physiological signals, which may contribute to the dysregulation of peripheral processes, such as inflammation.
Zotero Collections:

Meditation refers to a family of mental training practices that are designed to familiarize the practitioner with specific types of mental processes. One of the most basic forms of meditation is concentration meditation, in which sustained attention is focused on an object such as a small visual stimulus or the breath. In age-matched participants, using functional MRI, we found that activation in a network of brain regions typically involved in sustained attention showed an inverted u-shaped curve in which expert meditators (EMs) with an average of 19,000 h of practice had more activation than novices, but EMs with an average of 44,000 h had less activation. In response to distracter sounds used to probe the meditation, EMs vs. novices had less brain activation in regions related to discursive thoughts and emotions and more activation in regions related to response inhibition and attention. Correlation with hours of practice suggests possible plasticity in these mechanisms.
Zotero Collections:

Objective: Mindfulness is a process whereby one is aware and receptive to present moment experiences. Although mindfulness-enhancing interventions reduce pathological mental and physical health symptoms across a wide variety of conditions and diseases, the mechanisms underlying these effects remain unknown. Converging evidence from the mindfulness and neuroscience literature suggests that labeling affect may be one mechanism for these effects. Methods: Participants (n = 27) indicated trait levels of mindfulness and then completed an affect labeling task while undergoing functional magnetic resonance imaging. The labeling task consisted of matching facial expressions to appropriate affect words (affect labeling) or to gender-appropriate names (gender labeling control task). Results: After controlling for multiple individual difference measures, dispositional mindfulness was associated with greater widespread prefrontal cortical activation, and reduced bilateral amygdala activity during affect labeling, compared with the gender labeling control task. Further, strong negative associations were found between areas of prefrontal cortex and right amygdala responses in participants high in mindfulness but not in participants low in mindfulness. Conclusions: The present findings with a dispositional measure of mindfulness suggest one potential neurocognitive mechanism for understanding how mindfulness meditation interventions reduce negative affect and improve health outcomes, showing that mindfulness is associated with enhanced prefrontal cortical regulation of affect through labeling of negative affective stimuli.

OBJECTIVE: The purpose of this study was to use functional magnetic resonance imaging (fMRI) to probe the neural circuitry associated with reactivity to negative and positive affective stimuli in patients with major depressive disorder before treatment and after 2 and 8 weeks of treatment with venlafaxine. Relations between baseline neural activation and response to treatment were also evaluated. METHOD: Patients with major depressive disorder (N=12) and healthy comparison subjects (N=5) were scanned on three occasions, during which trials of alternating blocks of affective and neutral pictorial visual stimuli were presented. Symptoms were evaluated at each testing occasion, and both groups completed self-report measures of mood. Statistical parametric mapping was used to examine the fMRI data with a focus on the group-by-time interactions. RESULTS: Patients showed a significant reduction in depressive symptoms with treatment. Group-by-time interactions in response to the negative versus neutral stimuli were found in the left insular cortex and the left anterior cingulate. At baseline, both groups showed bilateral activation in the visual cortices, lateral prefrontal cortex, and amygdala in response to the negative versus neutral stimuli, with patients showing greater activation in the visual cortex and less activation in the left lateral prefrontal cortex. Patients with greater relative anterior cingulate activation at baseline in response to the negative versus neutral stimuli showed the most robust treatment response. CONCLUSIONS: The findings underscore the importance of the neural circuitry activated by negative affect in depression and indicate that components of this circuitry can be changed within 2 weeks of treatment with antidepressant medication.
Zotero Collections:

'Mindfulness' is a capacity for heightened present-moment awareness that we all possess to a greater or lesser extent. Enhancing this capacity through training has been shown to alleviate stress and promote physical and mental well-being. As a consequence, interest in mindfulness is growing and so is the need to better understand it. This study employed functional magnetic resonance imaging (fMRI) to identify the brain regions involved in state mindfulness and to shed light on its mechanisms of action. Significant signal decreases were observed during mindfulness meditation in midline cortical structures associated with interoception, including bilateral anterior insula, left ventral anterior cingulate cortex, right medial prefrontal cortex, and bilateral precuneus. Significant signal increase was noted in the right posterior cingulate cortex. These findings lend support to the theory that mindfulness achieves its positive outcomes through a process of disidentification.

OBJECTIVE: Positron emission tomography was used to investigate the neural substrates of normal human emotional and their dependence on the types of emotional stimulus. METHOD: Twelve healthy female subjects underwent 12 measurements of regional brain activity following the intravenous bolus administration of [15O]H2O as they alternated between emotion-generating and control film and recall tasks. Automated image analysis techniques were used to characterize and compare the increases in regional brain activity associated with the emotional response to complex visual (film) and cognitive (recall) stimuli. RESULTS: Film- and recall-generated emotion were each associated with significantly increased activity in the vicinity of the medial prefrontal cortex and thalamus, suggesting that these regions participate in aspects of emotion that do not depend on the nature of the emotional stimulus. Film-generated emotion was associated with significantly greater increases in activity bilaterally in the occipitotemporparietal cortex, lateral cerebellum, hypothalamus, and a region that includes the anterior temporal cortex, amygdala, and hippocampal formation, suggesting that these regions participate in the emotional response to certain exteroceptive sensory stimuli. Recall-generated sadness was associated with significantly greater increases in activity in the vicinity of the anterior insular cortex, suggesting that this region participates in the emotional response to potentially distressing cognitive or interoceptive sensory stimuli. CONCLUSIONS: While this study should be considered preliminary, it identified brain regions that participate in externally and internally generated human emotion.
Zotero Collections:

OBJECTIVE: Happiness, sadness, and disgust are three emotions that differ in their valence (positive or negative) and associated action tendencies (approach or withdrawal). This study was designed to investigate the neuroanatomical correlates of these discrete emotions. METHOD: Twelve healthy female subjects were studied. Positron emission tomography and [15O]H2O were used to measure regional brain activity. There were 12 conditions per subject: happiness, sadness, and disgust and three control conditions, each induced by film and recall. Emotion and control tasks were alternated throughout. Condition order was pseudo-randomized and counterbalanced across subjects. Analyses focused on brain activity patterns for each emotion when combining film and recall data. RESULTS: Happiness, sadness, and disgust were each associated with increases in activity in the thalamus and medial prefrontal cortex (Brodmann's area 9). These three emotions were also associated with activation of anterior and posterior temporal structures, primarily when induced by film. Recalled sadness was associated with increased activation in the anterior insula. Happiness was distinguished from sadness by greater activity in the vicinity of ventral mesial frontal cortex. CONCLUSIONS: While this study should be considered preliminary, it identifies regions of the brain that participate in happiness, sadness, and disgust, regions that distinguish between positive and negative emotions, and regions that depend on both the elicitor and valence of emotion or their interaction.
Zotero Collections:

Substantial evidence suggests that a key distinction in the classification of human emotion is that between an appetitive motivational system association with positive or pleasant emotion and an aversive motivational system associated with negative or unpleasant emotion. To explore the neural substrates of these two systems, 12 healthy women viewed sets of pictures previously demonstrated to elicit pleasant, unpleasant and neutral emotion, while positron emission tomographic (PET) measurements of regional cerebral blood flow were obtained. Pleasant and unpleasant emotions were each distinguished from neutral emotion conditions by significantly increased cerebral blood flow in the vicinity of the medial prefrontal cortex (Brodmann's area 9), thalamus, hypothalamus and midbrain (P < 0.005). Unpleasant was distinguished from neutral or pleasant emotion by activation of the bilateral occipito-temporal cortex and cerebellum, and left parahippocampal gyrus, hippocampus and amygdala (P < 0.005). Pleasant was also distinguished from neutral but not unpleasant emotion by activation of the head of the left caudate nucleus (P < 0.005). These findings are consistent with those from other recent PET studies of human emotion and demonstrate that there are both common and unique components of the neural networks mediating pleasant and unpleasant emotion in healthy women.
Zotero Collections:

Meditation comprises a series of practices mainly developed in eastern cultures aiming at controlling emotions and enhancing attentional processes. Several authors proposed to divide meditation techniques in focused attention (FA) and open monitoring (OM) techniques. Previous studies have reported differences in brain networks underlying FA and OM. On the other hand common activations across different meditative practices have been reported. Despite differences between forms of meditation and their underlying cognitive processes, we propose that all meditative techniques could share a central process that would be supported by a core network for meditation since their general common goal is to induce relaxation, regulating attention and developing an attitude of detachment from one’s own thoughts. To test this hypothesis, we conducted a quantitative meta-analysis based on activation likelihood estimation (ALE) of 10 neuroimaging studies (91 subjects) on different meditative techniques to evidence the core cortical network subserving meditation. We showed activation of basal ganglia (caudate body), limbic system (enthorinal cortex) and medial prefrontal cortex (MPFC). We discuss the functional role of these structures in meditation and we tentatively propose a neurocognitive model of meditation that could guide future research.

Selfhood and self-awareness, at least in humans, can be dissected into many levels. At one level, self-awareness describes a metacognitive aspect of consciousness wherein higher-order thought is directed through attentional focus on the self-object and self-related matters. This chapter explores the insights gained from neuroimaging studies into the brain substrates and mechanisms underlying such “high-level” self-referential processing. At another level, selfhood is reflected in self-recognition processes which discriminate self-related stimuli from other similar stimuli. Here, we examine the relevant neuroimaging evidence, focusing on self-face recognition as an exemplar. At a more fundamental level, we review what is known about the mental representation of the body, focusing on studies suggesting that a primary sense of self is ultimately derived from the neural representation of the body via interoception. These studies emphasize the continuous mapping of dynamic changes in internal state, whereby physiological demands and homeostatic imperatives dictate motivations and shape the contents of cognition. Here, converging neuroimaging evidence suggests that brain regions involved in representing internal physiological processes and making them available to conscious appraisal contribute to self-referential cognitions. This link is further apparent in the neural correlates of cognitive control and detachment techniques, such as mindfulness, that increasingly find clinical utility. Ultimately, inferences from neuroimaging regarding selfhood and self-awareness must cohere with evidence from lesion studies and with an increasingly sophisticated understanding of the brain as a connected network generating self-representations via a range of overlapping mechanisms.

Concepts originating from ancient Eastern texts are now being explored scientifically, leading to new insights into mind/brain function. Meditative practice, often viewed as an emotion regulation strategy, has been associated with pain reduction, low pain sensitivity, chronic pain improvement, and thickness of pain-related cortices. Zen meditation is unlike previously studied emotion regulation techniques; more akin to ‘no appraisal’ than ‘reappraisal’. This implies the cognitive evaluation of pain may be involved in the pain-related effects observed in meditators. Using functional magnetic resonance imaging and a thermal pain paradigm we show that practitioners of Zen, compared to controls, reduce activity in executive, evaluative and emotion areas during pain (prefrontal cortex, amygdala, hippocampus). Meditators with the most experience showed the largest activation reductions. Simultaneously, meditators more robustly activated primary pain processing regions (anterior cingulate cortex, thalamus, insula). Importantly, the lower pain sensitivity in meditators was strongly predicted by reductions in functional connectivity between executive and pain-related cortices. Results suggest a functional decoupling of the cognitive-evaluative and sensory-discriminative dimensions of pain, possibly allowing practitioners to view painful stimuli more neutrally. The activation pattern is remarkably consistent with the mindset described in Zen and the notion of mindfulness. Our findings contrast and challenge current concepts of pain and emotion regulation and cognitive control; commonly thought to manifest through increased activation of frontal executive areas. We suggest it is possible to self-regulate in a more ‘passive’ manner, by reducing higher-order evaluative processes, as demonstrated here by the disengagement of anterior brain systems in meditators.

In children, behavioral inhibition (BI) in response to potential threat predicts the development of anxiety and affective disorders, and primate lesion studies suggest involvement of the orbitofrontal cortex (OFC) in mediating BI. Lesion studies are essential for establishing causality in brain-behavior relationships, but should be interpreted cautiously because the impact of a discrete lesion on a complex neural circuit extends beyond the lesion location. Complementary functional imaging methods assessing how lesions influence other parts of the circuit can aid in precisely understanding how lesions affect behavior. Using this combination of approaches in monkeys, we found that OFC lesions concomitantly alter BI and metabolism in the bed nucleus of stria terminalis (BNST) region and that individual differences in BNST activity predict BI. Thus it appears that an important function of the OFC in response to threat is to modulate the BNST, which may more directly influence the expression of BI.
Zotero Collections:

Positive affect elicited in a mother toward her newborn infant may be one of the most powerful and evolutionarily preserved forms of positive affect in the emotional landscape of human behavior. This study examined the neurobiology of this form of positive emotion and in so doing, sought to overcome the difficulty of eliciting robust positive affect in response to visual stimuli in the physiological laboratory. Six primiparous human mothers with no indications of postpartum depression brought their infants into the laboratory for a photo shoot. Approximately 6 weeks later, they viewed photographs of their infant, another infant, and adult faces during acquisition of functional magnetic resonance images (fMRI). Mothers exhibited bilateral activation of the orbitofrontal cortex (OFC) while viewing pictures of their own versus unfamiliar infants. While in the scanner, mothers rated their mood more positively for pictures of their own infants than for unfamiliar infants, adults, or at baseline. The orbitofrontal activation correlated positively with pleasant mood ratings. In contrast, areas of visual cortex that also discriminated between own and unfamiliar infants were unrelated to mood ratings. These data implicate the orbitofrontal cortex in a mother's affective responses to her infant, a form of positive emotion that has received scant attention in prior human neurobiological studies. Furthermore, individual variations in orbitofrontal activation to infant stimuli may reflect an important dimension of maternal attachment.
Zotero Collections:

Neuroimage phenotyping for psychiatric and neurological disorders is performed using voxelwise analyses also known as voxel based analyses or morphometry (VBM). A typical voxelwise analysis treats measurements at each voxel (e.g., fractional anisotropy, gray matter probability) as outcome measures to study the effects of possible explanatory variables (e.g., age, group) in a linear regression setting. Furthermore, each voxel is treated independently until the stage of correction for multiple comparisons. Recently, multi-voxel pattern analyses (MVPA), such as classification, have arisen as an alternative to VBM. The main advantage of MVPA over VBM is that the former employ multivariate methods which can account for interactions among voxels in identifying significant patterns. They also provide ways for computer-aided diagnosis and prognosis at individual subject level. However, compared to VBM, the results of MVPA are often more difficult to interpret and prone to arbitrary conclusions. In this paper, first we use penalized likelihood modeling to provide a unified framework for understanding both VBM and MVPA. We then utilize statistical learning theory to provide practical methods for interpreting the results of MVPA beyond commonly used performance metrics, such as leave-one-out-cross validation accuracy and area under the receiver operating characteristic (ROC) curve. Additionally, we demonstrate that there are challenges in MVPA when trying to obtain image phenotyping information in the form of statistical parametric maps (SPMs), which are commonly obtained from VBM, and provide a bootstrap strategy as a potential solution for generating SPMs using MVPA. This technique also allows us to maximize the use of available training data. We illustrate the empirical performance of the proposed framework using two different neuroimaging studies that pose different levels of challenge for classification using MVPA.
Zotero Collections:

The response to painful stimulation depends not only on peripheral nociceptive input but also on the cognitive and affective context in which pain occurs. One contextual variable that affects the neural and behavioral response to nociceptive stimulation is the degree to which pain is perceived to be controllable. Previous studies indicate that perceived controllability affects pain tolerance, learning and motivation, and the ability to cope with intractable pain, suggesting that it has profound effects on neural pain processing. To date, however, no neuroimaging studies have assessed these effects. We manipulated the subjects' belief that they had control over a nociceptive stimulus, while the stimulus itself was held constant. Using functional magnetic resonance imaging, we found that pain that was perceived to be controllable resulted in attenuated activation in the three neural areas most consistently linked with pain processing: the anterior cingulate, insular, and secondary somatosensory cortices. This suggests that activation at these sites is modulated by cognitive variables, such as perceived controllability, and that pain imaging studies may therefore overestimate the degree to which these responses are stimulus driven and generalizable across cognitive contexts.
Zotero Collections:

Our outside world changes continuously, for example, when driving through traffic. An important question is how our brain deals with this constant barrage of rapidly changing sensory input and flexibly selects only newly goal-relevant information for further capacity-limited processing in working memory. The challenge our brain faces is experimentally captured by the attentional blink (AB): an impairment in detecting the second of two target stimuli presented in close temporal proximity among distracters. Many theories have been proposed to explain this deficit in processing goal-relevant information, with some attributing the AB to capacity limitations related to encoding of the first target and others assigning a critical role to on-line selection mechanisms that control access to working memory. The current study examined the role of striatal dopamine in the AB, given its known role in regulating the contents of working memory. Specifically, participants performed an AB task and their basal level of dopamine D2-like receptor binding was measured using PET and [F-18]fallypride. As predicted, individual differences analyses showed that greater D2-like receptor binding in the striatum was associated with a larger AB, implicating striatal dopamine and mechanisms that control access to working memory in the AB. Specifically, we propose that striatal dopamine may determine the AB by regulating the threshold for working memory updating, providing a testable physiological basis for this deficit in gating rapidly changing visual information. A challenge for current models of the AB lies in connecting more directly to these neurobiological data.
Zotero Collections:

Pages

  • Page
  • of 6