Skip to main content Skip to search
Displaying 1 - 25 of 111

Pages

  • Page
  • of 5
To gain insight into the neurophysiological mechanisms involved in Zen meditation, we evaluated the effects of focused attention (FA) on breathing movements in the lower abdomen (Tanden) in novices. We investigated hemodynamic changes in the prefrontal cortex (PFC), an attention-related brain region, using 24-channel near-infrared spectroscopy during a 20-minute session of FA on Tanden breathing in 15 healthy volunteers. We found that the level of oxygenated hemoglobin in the anterior PFC was significantly increased during FA on Tanden breathing, accompanied by a reduction in feelings of negative mood compared to before the meditation session. Electroencephalography (EEG) revealed increased alpha band activity and decreased theta band activity during and after FA on Tanden breathing. EEG changes were correlated with a significant increase in whole blood serotonin (5-HT) levels. These results suggest that activation of the anterior PFC and 5-HT system may be responsible for the improvement of negative mood and EEG signal changes observed during FA on Tanden breathing.

Functional neuroimaging studies have implicated the fusiform gyri (FG) in structural encoding of faces, while event-related potential (ERP) and magnetoencephalography studies have shown that such encoding occurs approximately 170 ms poststimulus. Behavioral and functional neuroimaging studies suggest that processes involved in face recognition may be strongly modulated by socially relevant information conveyed by faces. To test the hypothesis that affective information indeed modulates early stages of face processing, ERPs were recorded to individually assessed liked, neutral, and disliked faces and checkerboard-reversal stimuli. At the N170 latency, the cortical three-dimensional distribution of current density was computed in stereotactic space using a tomographic source localization technique. Mean activity was extracted from the FG, defined by structure-probability maps, and a meta-cluster delineated by the coordinates of the voxel with the strongest face-sensitive response from five published functional magnetic resonance imaging studies. In the FG, approximately 160 ms poststimulus, liked faces elicited stronger activation than disliked and neutral faces and checkerboard-reversal stimuli. Further, confirming recent results, affect-modulated brain electrical activity started very early in the human brain (approximately 112 ms). These findings suggest that affective features conveyed by faces modulate structural face encoding. Behavioral results from an independent study revealed that the stimuli were not biased toward particular facial expressions and confirmed that liked faces were rated as more attractive. Increased FG activation for liked faces may thus be interpreted as reflecting enhanced attention due to their saliency.
Zotero Collections:

The brain circuitry underlying emotion includes several territories of the prefrontal cortex (PFC), the amygdala, hippocampus, anterior cingulate, and related structures. In general, the PFC represents emotion in the absence of immediately present incentives and thus plays a crucial role in the anticipation of the future affective consequences of action, as well as in the persistence of emotion following the offset of an elicitor. The functions of the other structures in this circuit are also considered. Individual differences in this circuitry are reviewed, with an emphasis on asymmetries within the PFC and activation of the amygdala as 2 key components of affective style. These individual differences are related to both behavioral and biological variables associated with affective style and emotion regulation. Plasticity in this circuitry and its implications for transforming emotion and cultivating positive affect and resilience are considered.
Zotero Collections:

<p>Humans often judge others egocentrically, assuming that they feel or think similarly to themselves. Emotional egocentricity bias (EEB) occurs in situations when others feel differently to oneself. Using a novel paradigm, we investigated the neurocognitive mechanisms underlying the developmental capacity to overcome such EEB in children compared with adults. We showed that children display a stronger EEB than adults and that this correlates with reduced activation in right supramarginal gyrus (rSMG) as well as reduced coupling between rSMG and left dorsolateral prefrontal cortex (lDLPFC) in children compared with adults. Crucially, functional recruitment of rSMG was associated with age-related differences in cortical thickness of this region. Although in adults the mere presence of emotional conflict occurs between self and other recruited rSMG, rSMG-lDLPFC coupling was only observed when implementing empathic judgements. Finally, resting state analyses comparing connectivity patterns of rSMG with that of right temporoparietal junction suggested a unique role of rSMG for self-other distinction in the emotional domain for adults as well as for children. Thus, children’s difficulties in overcoming EEB may be due to late maturation of regions distinguishing between conflicting socio-affective information and relaying this information to regions necessary for implementing accurate judgments.</p>
Zotero Collections:

OBJECTIVE: The underlying changes in biological processes that are associated with reported changes in mental and physical health in response to meditation have not been systematically explored. We performed a randomized, controlled study on the effects on brain and immune function of a well-known and widely used 8-week clinical training program in mindfulness meditation applied in a work environment with healthy employees. METHODS: We measured brain electrical activity before and immediately after, and then 4 months after an 8-week training program in mindfulness meditation. Twenty-five subjects were tested in the meditation group. A wait-list control group (N = 16) was tested at the same points in time as the meditators. At the end of the 8-week period, subjects in both groups were vaccinated with influenza vaccine. RESULTS: We report for the first time significant increases in left-sided anterior activation, a pattern previously associated with positive affect, in the meditators compared with the nonmeditators. We also found significant increases in antibody titers to influenza vaccine among subjects in the meditation compared with those in the wait-list control group. Finally, the magnitude of increase in left-sided activation predicted the magnitude of antibody titer rise to the vaccine. CONCLUSIONS: These findings demonstrate that a short program in mindfulness meditation produces demonstrable effects on brain and immune function. These findings suggest that meditation may change brain and immune function in positive ways and underscore the need for additional research.
Zotero Collections:

Experientially opening oneself to pain rather than avoiding it is said to reduce the mind's tendency toward avoidance or anxiety which can further exacerbate the experience of pain. This is a central feature of mindfulness-based therapies. Little is known about the neural mechanisms of mindfulness on pain. During a meditation practice similar to mindfulness, functional magnetic resonance imaging was used in expert meditators (>10,000 h of practice) to dissociate neural activation patterns associated with pain, its anticipation, and habituation. Compared to novices, expert meditators reported equal pain intensity, but less unpleasantness. This difference was associated with enhanced activity in the dorsal anterior insula (aI), and the anterior mid-cingulate (aMCC) the so-called 'salience network', for experts during pain. This enhanced activity during pain was associated with reduced baseline activity before pain in these regions and the amygdala for experts only. The reduced baseline activation in left aI correlated with lifetime meditation experience. This pattern of low baseline activity coupled with high response in aIns and aMCC was associated with enhanced neural habituation in amygdala and pain-related regions before painful stimulation and in the pain-related regions during painful stimulation. These findings suggest that cultivating experiential openness down-regulates anticipatory representation of aversive events, and increases the recruitment of attentional resources during pain, which is associated with faster neural habituation.
Zotero Collections:

The primary taste cortex consists of the insula and operculum. Previous work has indicated that neurons in the primary taste cortex respond solely to sensory input from taste receptors and lingual somatosensory receptors. Using functional magnetic resonance imaging, we show here that expectancy modulates these neural responses in humans. When subjects were led to believe that a highly aversive bitter taste would be less distasteful than it actually was, they reported it to be less aversive than when they had accurate information about the taste and, moreover, the primary taste cortex was less strongly activated. In addition, the activation of the right insula and operculum tracked online ratings of the aversiveness for each taste. Such expectancy-driven modulation of primary sensory cortex may affect perceptions of external events.
Zotero Collections:

Among younger adults, the ability to willfully regulate negative affect, enabling effective responses to stressful experiences, engages regions of prefrontal cortex (PFC) and the amygdala. Because regions of PFC and the amygdala are known to influence the hypothalamic-pituitary-adrenal axis, here we test whether PFC and amygdala responses during emotion regulation predict the diurnal pattern of salivary cortisol secretion. We also test whether PFC and amygdala regions are engaged during emotion regulation in older (62- to 64-year-old) rather than younger individuals. We measured brain activity using functional magnetic resonance imaging as participants regulated (increased or decreased) their affective responses or attended to negative picture stimuli. We also collected saliva samples for 1 week at home for cortisol assay. Consistent with previous work in younger samples, increasing negative affect resulted in ventral lateral, dorsolateral, and dorsomedial regions of PFC and amygdala activation. In contrast to previous work, decreasing negative affect did not produce the predicted robust pattern of higher PFC and lower amygdala activation. Individuals demonstrating the predicted effect (decrease < attend in the amygdala), however, exhibited higher signal in ventromedial prefrontal cortex (VMPFC) for the same contrast. Furthermore, participants displaying higher VMPFC and lower amygdala signal when decreasing compared with the attention control condition evidenced steeper, more normative declines in cortisol over the course of the day. Individual differences yielded the predicted link between brain function while reducing negative affect in the laboratory and diurnal regulation of endocrine activity in the home environment.
Zotero Collections:

Despite growing evidence on the neural bases of emotion regulation, little is known about the mechanisms underlying individual differences in cognitive regulation of negative emotion, and few studies have used objective measures to quantify regulatory success. Using a trait-like psychophysiological measure of emotion regulation, corrugator electromyography, we obtained an objective index of the ability to cognitively reappraise negative emotion in 56 healthy men (Session 1), who returned 1.3 years later to perform the same regulation task using fMRI (Session 2). Results indicated that the corrugator measure of regulatory skill predicted amygdala-prefrontal functional connectivity. Individuals with greater ability to down-regulate negative emotion as indexed by corrugator at Session 1 showed not only greater amygdala attenuation but also greater inverse connectivity between the amygdala and several sectors of the prefrontal cortex while down-regulating negative emotion at Session 2. Our results demonstrate that individual differences in emotion regulation are stable over time and underscore the important role of amygdala-prefrontal coupling for successful regulation of negative emotion.
Zotero Collections:

The amygdalae are important, if not critical, brain regions for many affective, attentional and memorial processes, and dysfunction of the amygdalae has been a consistent finding in the study of clinical depression. Theoretical models of the functional neuroanatomy of both normal and psychopathological affective processes which posit cortical hemispheric specialization of functions have been supported by both lesion and functional neuroimaging studies in humans. Results from human neuroimaging studies in support of amygdalar hemispheric specialization are inconsistent. However, recent results from human lesion studies are consistent with hemispheric specialization. An important, yet largely ignored, feature of the amygdalae in the primate brain--derived from both neuroanatomical and electrophysiological data--is that there are virtually no direct interhemispheric connections via the anterior commissure (AC). This feature stands in stark contrast to that of the rodent brain wherein virtually all amygdalar nuclei have direct interhemispheric connections. We propose this feature of the primate brain, in particular the human brain, is a result of influences from frontocortical hemispheric specialization which have developed over the course of primate brain evolution. Results consistent with this notion were obtained by examining the nature of human amygdalar interhemispheric connectivity using both functional magnetic resonance imaging (FMRI) and positron emission tomography (PET). We found modest evidence of amygdalar interhemispheric functional connectivity in the non-depressed brain, whereas there was strong evidence of functional connectivity in the depressed brain. We interpret and discuss the nature of this connectivity in the depressed brain in the context of dysfunctional frontocortical-amygdalar interactions which accompany clinical depression.
Zotero Collections:

This article presents an overview of the author's recent electrophysiological studies of anterior cerebral asymmetries related to emotion and affective style. A theoretical account is provided of the role of the two hemispheres in emotional processing. This account assigns a major role in approach- and withdrawal-related behavior to the left and right frontal and anterior temporal regions of two hemispheres, respectively. Individual differences in approach- and withdrawal-related emotional reactivity and temperament are associated with stable differences in baseline measures of activation asymmetry in these anterior regions. Phasic state changes in emotion result in shifts in anterior activation asymmetry which are superimposed upon these stable baseline differences. Future directions for research in this area are discussed.
Zotero Collections:

This article reviews the modern literature on two key aspects of the central circuitry of emotion: the prefrontal cortex (PFC) and the amygdala. There are several different functional divisions of the PFC, including the dorsolateral, ventromedial, and orbital sectors. Each of these regions plays some role in affective processing that shares the feature of representing affect in the absence of immediate rewards and punishments as well as in different aspects of emotional regulation. The amygdala appears to be crucial for the learning of new stimulus-threat contingencies and also appears to be important in the expression of cue-specific fear. Individual differences in both tonic activation and phasic reactivity in this circuit play an important role in governing different aspects of anxiety. Emphasis is placed on affective chronometry, or the time course of emotional responding, as a key attribute of individual differences in propensity for anxiety that is regulated by this circuitry.
Zotero Collections:

On the basis of a review of the extant literature describing emotion-cognition interactions, the authors propose 4 methodological desiderata for studying how task-irrelevant affect modulates cognition and present data from an experiment satisfying them. Consistent with accounts of the hemispheric asymmetries characterizing withdrawal-related negative affect and visuospatial working memory (WM) in prefrontal and parietal cortices, threat-induced anxiety selectively disrupted accuracy of spatial but not verbal WM performance. Furthermore, individual differences in physiological measures of anxiety statistically mediated the degree of disruption. A second experiment revealed that individuals characterized by high levels of behavioral inhibition exhibited more intense anxiety and relatively worse spatial WM performance in the absence of threat, solidifying the authors' inference that anxiety causally mediates disruption. These observations suggest a revision of extant models of how anxiety sculpts cognition and underscore the utility of the desiderata.
Zotero Collections:

In this experiment, we combined the measurement of observable facial behavior with simultaneous measures of brain electrical activity to assess patterns of hemispheric activation in different regions during the experience of happiness and disgust. Disgust was found to be associated with right-sided activation in the frontal and anterior temporal regions compared with the happy condition. Happiness was accompanied by left-sided activation in the anterior temporal region compared with disgust. No differences in asymmetry were found between emotions in the central and parietal regions. When data aggregated across positive films were compared to aggregate negative film data, no reliable differences in brain activity were found. These findings illustrate the utility of using facial behavior to verify the presence of emotion, are consistent with the notion of emotion-specific physiological patterning, and underscore the importance of anterior cerebral asymmetries for emotions associated with approach and withdrawal.
Zotero Collections:

This study compared the asymmetry of different features of brain electrical activity during the performance of a verbal task (word finding) and a spatial task (dot localization) that had been carefully matched on psychometric properties and accompanying motor activity. Nineteen right-handed subjects were tested. EEG was recorded from F3, F4, C3, C4, P3, and P4, referred to both CZ and computer-derived averaged-ears references, and Fourier transformed. Power in the delta, theta, alpha, and beta bands was computed. There were significant Task X Hemisphere effects in all bands for CZ-referenced data and for the alpha and beta bands for ears-referenced data. The effects were always either greater power suppression in the hemisphere putatively most engaged in task processing or greater power in the opposite hemisphere. Correlations between EEG and task performance indicated that CZ-referenced parietal alpha asymmetry accounted for the most variance in verbal task performance. Power within individual hemispheres or across hemispheres was unrelated to task performance. The findings indicate robust differences in asymmetrical brain physiology that are produced by well-matched verbal and spatial cognitive tasks.
Zotero Collections:

Thirty-two participants were tested for both resting electroencephalography (EEG) and neuropsychological function. Eight one-minute trials of resting EEG were recorded from 14 channels referenced to linked ears, which was rederived to an average reference. Neuropsychological tasks included Verbal Fluency, the Tower of London, and Corsi's Recurring Blocks. Asymmetries in EEG alpha activity were correlated with performance on these tasks. Similar patterns were obtained for delta and theta bands. Factor analyses of resting EEG asymmetries over particular regions suggested that asymmetries over anterior scalp regions may be partly independent from those over posterior scalp regions. These results support the notions that resting EEG asymmetries are specified by multiple mechanisms along the rostral/caudal plane, and that these asymmetries predict task performance in a manner consistent with lesion and neuroimaging studies.
Zotero Collections:

The brain and the cardiovascular system influence each other during the processing of emotion. The study of the interactions of these systems during emotion regulation has been limited in human functional neuroimaging, despite its potential importance for physical health. We have previously reported that mental expertise in cultivation of compassion alters the activation of circuits linked with empathy and theory of mind in response to emotional stimuli. Guided by the finding that heart rate increases more during blocks of compassion meditation than neutral states, especially for experts, we examined the interaction between state (compassion vs. neutral) and group (novice, expert) on the relation between heart rate and BOLD signal during presentation of emotional sounds presented during each state. Our findings revealed that BOLD signal in the right middle insula showed a significant association with heart rate (HR) across state and group. This association was stronger in the left middle/posterior insula when experts were compared to novices. The positive coupling of HR and BOLD was higher within the compassion state than within the neutral state in the dorsal anterior cingulate cortex for both groups, underlining the role of this region in the modulation of bodily arousal states. This state effect was stronger for experts than novices in somatosensory cortices and the right inferior parietal lobule (group by state interaction). These data confirm that compassion enhances the emotional and somatosensory brain representations of others' emotions, and that this effect is modulated by expertise. Future studies are needed to further investigate the impact of compassion training on these circuits.
Zotero Collections:

The experience of aversion is shaped by multiple physiological and psychological factors including one's expectations. Recent work has shown that expectancy manipulation can alter perceptions of aversive events and concomitant brain activation. Accruing evidence indicates a primary role of altered expectancies in the placebo effect. Here, we probed the mechanism by which expectation attenuates sensory taste transmission by examining how brain areas activated by misleading information during an expectancy period modulate insula and amygdala activation to a highly aversive bitter taste. In a rapid event-related fMRI design, we showed that activations in the rostral anterior cingulate cortex (rACC), orbitofrontal cortex (OFC), and dorsolateral prefrontal cortex to a misleading cue that the taste would be mildly aversive predicted decreases in insula and amygdala activation to the highly aversive taste. OFC and rACC activation to the misleading cue were also associated with less aversive ratings of that taste. Additional analyses revealed consistent results demonstrating functional connectivity among the OFC, rACC, and insula. Altering expectancies of upcoming aversive events are shown here to depend on robust functional associations among brain regions implicated in prior work on the placebo effect.
Zotero Collections:

We have studied a number of long-term meditators in previous studies. The purpose of this study was to determine if there are differences in baseline brain function of experienced meditators compared to non-meditators. All subjects were recruited as part of an ongoing study of different meditation practices. We evaluated 12 advanced meditators and 14 non-meditators with cerebral blood flow (CBF) SPECT imaging at rest. Images were analyzed with both region of interest and statistical parametric mapping. The CBF of long-term meditators was significantly higher (p &lt; .05) compared to non-meditators in the prefrontal cortex, parietal cortex, thalamus, putamen, caudate, and midbrain. There was also a significant difference in the thalamic laterality with long-term meditators having greater asymmetry. The observed changes associated with long-term meditation appear in structures that underlie the attention network and also those that relate to emotion and autonomic function.

The anterior medial prefrontal (AMPFC) and retrosplenial (RSC) cortices are active during self-referential decision-making tasks such as when participants appraise traits and abilities, or current affect. Other appraisal tasks requiring an evaluative decision or mental representation, such as theory of mind and perspective-taking tasks, also involve these regions. In many instances, these types of decisions involve a subjective opinion or preference, but also a degree of ambiguity in the decision, rather than a strictly veridical response. However, this ambiguity is generally not controlled for in studies that examine self-referential decision-making. In this functional magnetic resonance imaging experiment with 17 healthy adults, we examined neural processes associated with subjective decision-making with and without an overt self-referential component. The task required subjective decisions about colors-regarding self-preference (internal subjective decision) or color similarity (external subjective decision) under conditions where there was no objectively correct response. Results indicated greater activation in the AMPFC, RSC, and caudate nucleus during internal subjective decision-making. The findings suggest that self-referential processing, rather than subjective judgments among ambiguous response alternatives, accounted for the AMPFC and RSC response.
Zotero Collections:

BACKGROUND: Asymmetric patterns of frontal brain activity and brain corticotropin-releasing hormone (CRH) systems have both been separately implicated in the processing of normal and abnormal emotional responses. Previous studies in rhesus monkeys demonstrated that individuals with extreme right frontal asymmetric brain electrical activity have high levels of trait-like fearful behavior and increased plasma cortisol concentrations. METHODS: In this study we assessed cerebrospinal fluid (CSF) CRH concentrations in monkeys with extreme left and extreme right frontal brain electrical activity. CSF was repeatedly collected at 4, 8, 14, 40, and 52 months of age. RESULTS: Monkeys with extreme right frontal brain activity had increased CSF CRH concentrations at all ages measured. In addition, individual differences in CSF CRH concentrations were stable from 4 to 52 months of age. CONCLUSIONS: These findings suggest that, in primates, the fearful endophenotype is characterized by increased fearful behavior, a specific pattern of frontal electrical activity, increased pituitary-adrenal activity, and increased activity of brain CRH systems. Data from other preclinical studies suggests that the increased brain CRH activity may underlie the behavioral and physiological characteristics of fearful endophenotype.
Zotero Collections:

Maltreatment during childhood is a major risk factor for anxiety and depression, which are major public health problems. However, the underlying brain mechanism linking maltreatment and internalizing disorders remains poorly understood. Maltreatment may alter the activation of fear circuitry, but little is known about its impact on the connectivity of this circuitry in adolescence and whether such brain changes actually lead to internalizing symptoms. We examined the associations between experiences of maltreatment during childhood, resting-state functional brain connectivity (rs-FC) of the amygdala and hippocampus, and internalizing symptoms in 64 adolescents participating in a longitudinal community study. Childhood experiences of maltreatment were associated with lower hippocampus–subgenual cingulate rs-FC in both adolescent females and males and lower amygdala–subgenual cingulate rs-FC in females only. Furthermore, rs-FC mediated the association of maltreatment during childhood with adolescent internalizing symptoms. Thus, maltreatment in childhood, even at the lower severity levels found in a community sample, may alter the regulatory capacity of the brain’s fear circuit, leading to increased internalizing symptoms by late adolescence. These findings highlight the importance of fronto–hippocampal connectivity for both sexes in internalizing symptoms following maltreatment in childhood. Furthermore, the impact of maltreatment during childhood on both fronto–amygdala and –hippocampal connectivity in females may help explain their higher risk for internalizing disorders such as anxiety and depression.
Zotero Collections:

<p>Many powerful human emotional thoughts are generated in the absence of a precipitating event in the environment. Here, we tested whether we can decode the valence of internally driven, self-generated thoughts during task-free rest based on neural similarities with task-related affective mental states. We acquired functional magnetic resonance imaging (fMRI) data while participants generated positive and negative thoughts as part of an attribution task (Session A) and while they reported the occurrence of comparable mental states during task-free rest periods (Session B). With the use of multivariate pattern analyses (MVPA), we identified response patterns in the medial orbitofrontal cortex (mOFC) that encode the affective content of thoughts that are generated in response to an external experimental cue. Importantly, these task driven response patterns reliably predicted the occurrence of affective thoughts generated during unconstrained rest periods recorded one week apart. This demonstrates that at least certain elements of task-cued and task-free affective experiences rely on a common neural code. Furthermore, our findings reveal the role that the mOFC plays in determining the affective tone of unconstrained thoughts. More generally, our results suggest that MVPA is an important methodological tool for attempts to understand unguided subject driven mental states such as mind-wandering and daydreaming based on neural similarities with task-based experiences.</p>
Zotero Collections:

The authors compared 12 pairs of cerebral [18F]-fluoro-deoxyglucose (FDG) 2D/3D image sets from a GE/Advance PET scanner, incorporating the actual corrections used on human subjects. Differences in resolution consistent with other published values were found. There is a significant difference in axial resolution between 2D and 3D, and the authors focused on this as it is a scanner feature that cannot be readily changed. Previously published values for spatial axial resolution in 2D and 3D modes were used to model the differential axial smoothing at each image voxel. This model was applied to the 2D FDG images, and the resulting smoothed data indicate the published differences in axial resolution between 2D and 3D modes can account for 30-40% of the differences between these image sets. The authors then investigated the effect this difference might have on analysis typically performed on human FDG data. A phantom containing spherical hot- and cool-spots in a warm background to mimic a typical human cerebral FDG PET scan was scanned for a variety of time durations (30, 15, 5, 1 min). Only for the 1-minute frame (total counts 2D:6M, 3D:30M) is there an advantage to using 3D mode; for the longer frames which are more typical of a human FDG protocol, the reliability for extracting regions-of-interest is the same for either mode while 2D mode shows better quantitative accuracy
Zotero Collections:

Pages

  • Page
  • of 5