Skip to main content Skip to search
Displaying 1 - 25 of 43

Pages

  • Page
  • of 2
On the basis of a review of the extant literature describing emotion-cognition interactions, the authors propose 4 methodological desiderata for studying how task-irrelevant affect modulates cognition and present data from an experiment satisfying them. Consistent with accounts of the hemispheric asymmetries characterizing withdrawal-related negative affect and visuospatial working memory (WM) in prefrontal and parietal cortices, threat-induced anxiety selectively disrupted accuracy of spatial but not verbal WM performance. Furthermore, individual differences in physiological measures of anxiety statistically mediated the degree of disruption. A second experiment revealed that individuals characterized by high levels of behavioral inhibition exhibited more intense anxiety and relatively worse spatial WM performance in the absence of threat, solidifying the authors' inference that anxiety causally mediates disruption. These observations suggest a revision of extant models of how anxiety sculpts cognition and underscore the utility of the desiderata.
Zotero Collections:

The conceptual system contains categorical knowledge about experience that supports the spectrum of cognitive processes. Cognitive science theories assume that categorical knowledge resides in a modular and amodal semantic memory, whereas neuroscience theories assume that categorical knowledge is grounded in the brain's modal systems for perception, action, and affect. Neuroscience has influenced theories of the conceptual system by stressing principles of neural processing in neural networks and by motivating grounded theories of cognition, which propose that simulations of experience represent knowledge. Cognitive science has influenced theories of the conceptual system by documenting conceptual phenomena and symbolic operations that must be grounded in the brain. Significant progress in understanding the conceptual system is most likely to occur if cognitive and neural approaches achieve successful integration.
Zotero Collections:

Motion correction of fMRI data is a widely used step prior to data analysis. In this study, a comparison of the motion correction tools provided by several leading fMRI analysis software packages was performed, including AFNI, AIR, BrainVoyager, FSL, and SPM2. Comparisons were performed using data from typical human studies as well as phantom data. The identical reconstruction, preprocessing, and analysis steps were used on every data set, except that motion correction was performed using various configurations from each software package. Each package was studied using default parameters, as well as parameters optimized for speed and accuracy. Forty subjects performed a Go/No-go task (an event-related design that investigates inhibitory motor response) and an N-back task (a block-design paradigm investigating working memory). The human data were analyzed by extracting a set of general linear model (GLM)-derived activation results and comparing the effect of motion correction on thresholded activation cluster size and maximum t value. In addition, a series of simulated phantom data sets were created with known activation locations, magnitudes, and realistic motion. Results from the phantom data indicate that AFNI and SPM2 yield the most accurate motion estimation parameters, while AFNI's interpolation algorithm introduces the least smoothing. AFNI is also the fastest of the packages tested. However, these advantages did not produce noticeably better activation results in motion-corrected data from typical human fMRI experiments. Although differences in performance between packages were apparent in the human data, no single software package produced dramatically better results than the others. The "accurate" parameters showed virtually no improvement in cluster t values compared to the standard parameters. While the "fast" parameters did not result in a substantial increase in speed, they did not degrade the cluster results very much either. The phantom and human data indicate that motion correction can be a valuable step in the data processing chain, yielding improvements of up to 20% in the magnitude and up to 100% in the cluster size of detected activations, but the choice of software package does not substantially affect this improvement.
Zotero Collections:

Many investigators have hypothesized that brain response to cortisol is altered in depression. However, neural activation in response to exogenously manipulated cortisol elevations has not yet been directly examined in depressed humans. Animal research shows that glucocorticoids have robust effects on hippocampal function, and can either enhance or suppress neuroplastic events in the hippocampus depending on a number of factors. We hypothesized that depressed individuals would show 1) altered hippocampal response to exogenous administration of cortisol, and 2) altered effects of cortisol on learning. In a repeated-measures design, 19 unmedicated depressed and 41 healthy individuals completed two fMRI scans. Fifteen mg oral hydrocortisone (i.e., cortisol) or placebo (order randomized and double-blind) was administered 1 h prior to encoding of emotional and neutral words during fMRI scans. Data analysis examined the effects of cortisol administration on 1) brain activation during encoding, and 2) subsequent free recall for words. Cortisol affected subsequent recall performance in depressed but not healthy individuals. We found alterations in hippocampal response to cortisol in depressed women, but not in depressed men (who showed altered response to cortisol in other regions, including subgenual prefrontal cortex). In both depressed men and women, cortisol's effects on hippocampal function were positively correlated with its effects on recall performance assessed days later. Our data provide evidence that in depressed compared to healthy women, cortisol's effects on hippocampal function are altered. Our data also show that in both depressed men and women, cortisol's effects on emotional memory formation and hippocampal function are related.
Zotero Collections:

In a test of the effects of cortisol on emotional memory, 90 men were orally administered placebo or 20 or 40 mg cortisol and presented with emotionally arousing and neutral stimuli. On memory tests administered within 1 hr of stimulus presentation, cortisol elevations caused a reduction in the number of errors committed on free-recall tasks. Two evenings later, when cortisol levels were no longer manipulated, inverted-U quadratic trends were found for recognition memory tasks, reflecting memory facilitation in the 20-mg group for both negative and neutral information. Results suggest that the effects of cortisol on memory do not differ substantially for emotional and neutral information. The study provides evidence of beneficial effects of acute cortisol elevations on explicit memory in humans.
Zotero Collections:

Cyclic AMP (cAMP) is a second messenger involved in many processes including mnemonic processing and anxiety. Memory deficits and anxiety are noted in the phenotype of fragile X (FX), the most common heritable cause of mental retardation and autism. Here we review reported observations of altered cAMP cascade function in FX and autism. Cyclic AMP is a potentially useful biochemical marker to distinguish autism comorbid with FX from autism per se and the cAMP cascade may be a viable therapeutic target for both FX and autism.
Zotero Collections:

Mindfulness meditation practices (MMPs) are a subgroup of meditation practices which are receiving growing attention. The present paper reviews current evidence about the effects of MMPs on objective measures of cognitive functions. Five databases were searched. Twenty three studies providing measures of attention, memory, executive functions and further miscellaneous measures of cognition were included. Fifteen were controlled or randomized controlled studies and 8 were case–control studies. Overall, reviewed studies suggested that early phases of mindfulness training, which are more concerned with the development of focused attention, could be associated with significant improvements in selective and executive attention whereas the following phases, which are characterized by an open monitoring of internal and external stimuli, could be mainly associated with improved unfocused sustained attention abilities. Additionally, MMPs could enhance working memory capacity and some executive functions. However, many of the included studies show methodological limitations and negative results have been reported as well, plausibly reflecting differences in study design, study duration and patients' populations. Accordingly, even though findings here reviewed provided preliminary evidence suggesting that MMPs could enhance cognitive functions, available evidence should be considered with caution and further high quality studies investigating more standardized mindfulness meditation programs are needed.

People believe they see emotion written on the faces of other people. In an instant, simple facial actions are transformed into information about another's emotional state. The present research examined whether a perceiver unknowingly contributes to emotion perception with emotion word knowledge. We present 2 studies that together support a role for emotion concepts in the formation of visual percepts of emotion. As predicted, we found that perceptual priming of emotional faces (e.g., a scowling face) was disrupted when the accessibility of a relevant emotion word (e.g., anger) was temporarily reduced, demonstrating that the exact same face was encoded differently when a word was accessible versus when it was not. The implications of these findings for a linguistically relative view of emotion perception are discussed.
Zotero Collections:

We investigated the impact of mindfulness training (MT) on working memory capacity (WMC) and affective experience. WMC is used in managing cognitive demands and regulating emotions. Yet, persistent and intensive demands, such as those experienced during high-stress intervals, may deplete WMC and lead to cognitive failures and emotional disturbances. We hypothesized that MT may mitigate these deleterious effects by bolstering WMC. We recruited 2 military cohorts during the high-stress predeployment interval and provided MT to 1 (MT, n = 31) but not the other group (military control group, MC, n = 17). The MT group attended an 8-week MT course and logged the amount of out-of-class time spent practicing formal MT exercises. The operation span task was used to index WMC at 2 testing sessions before and after the MT course. Although WMC remained stable over time in civilians (n = 12), it degraded in the MC group. In the MT group, WMC decreased over time in those with low MT practice time, but increased in those with high practice time. Higher MT practice time also corresponded to lower levels of negative affect and higher levels of positive affect (indexed by the Positive and Negative Affect Schedule). The relationship between practice time and negative, but not positive, affect was mediated by WMC, indicating that MT-related improvements in WMC may support some but not all of MT's salutary effects. Nonetheless, these findings suggest that sufficient MT practice may protect against functional impairments associated with high-stress contexts.
Zotero Collections:

The influence of approach and avoidance tendencies on affect, reasoning, and behavior has attracted substantial interest from researchers across various areas of psychology. Currently, frontal electroencephalographic (EEG) asymmetry in favor of left prefrontal regions is assumed to reflect the propensity to respond with approach-related tendencies. To test this hypothesis, we recorded resting EEG in 18 subjects, who separately performed a verbal memory task under three incentive conditions (neutral, reward, and punishment). Using a source-localization technique, we found that higher task-independent alpha2 (10.5-12 Hz) activity within left dorsolateral prefrontal and medial orbitofrontal regions was associated with stronger bias to respond to reward-related cues. Left prefrontal resting activity accounted for 54.8% of the variance in reward bias. These findings not only confirm that frontal EEG asymmetry modulates the propensity to engage in appetitively motivated behavior, but also provide anatomical details about the underlying brain systems.
Zotero Collections:

<p>Several recent studies using functional magnetic resonance imaging (fMRI) during recognition memory tests have suggested that the ability to neuromodulate as a function of cognitive demand may be impaired in older adults due to age-related cell loss and neural volume reduction in memory specific regions. In the current study, older adults (ages 59-77) were tested with fMRI during a delayed-recognition task in which memory load for faces was varied across trials. Activity was greater in amplitude for three- versus one-face stimuli within the superior, middle, and inferior frontal gyri, intraparietal sulcus, and fusiform gyrus. It was concluded that the ability to modulate activity with increasing load is preserved in older adults despite reductions in neural volume.</p>
Zotero Collections:

<p>We conducted two fMRI studies to investigate the sensitivity of delay-period activity to changes in memory load during a delayed-recognition task for faces. In Experiment 1, each trial began with the presentation of a memory array consisting of one, two, or three faces that lasted for 3 sec. A 15-sec delay period followed during which no stimuli were present. The delay interval concluded with a one-face probe to which subjects made a button press response indicating whether this face was part of the memory array. Experiment 2 was similar in design except that the delay period was lengthened to 24 sec, and the memory array consisted of only one or three faces. We hypothesized that memory maintenance processes that spanned the delay interval would be revealed by their sensitivity to memory load. Long delay intervals were employed to temporally dissociate phasic activity engendered by the memory array from sustained activity reflecting maintenance. Regions of interest (ROIs) were defined anatomically for the superior frontal gyri (SFG), middle frontal gyri (MFG), and inferior frontal gyri (IFG), intraparietal sulci (IPS), and fusiform gyri (FFG) on a subject-by-subject basis. The mean time course of activity was determined for all voxels within these regions and for that subset of voxels within each ROI that correlated significantly with an empirically determined reference waveform. In both experiments, memory load significantly influenced activation 6--9 sec following the onset of the memory array with larger amplitude responses for higher load levels. Responses were greatest within MFG, IPS, and FFG. In both experiments, however, these load-sensitive differences declined over successive time intervals and were no longer significant at the end of the delay interval. Although insensitive to our load manipulation, sustained activation was present at the conclusion of the delay interval within MFG and other prefrontal regions. IPS delay activity returned to prestimulus baseline levels prior to the end of the delay period in Experiment 2, but not in Experiment 1. Within FFG, delay activity returned to prestimulus baseline levels prior to the conclusion of the delay interval in both experiments. Thus, while phasic processes engendered by the memory array were strongly affected by memory load, no evidence for load-sensitive delay-spanning maintenance processes was obtained.</p>
Zotero Collections:

Lesions of the dorsal hippocampus have been shown to disrupt both the acquisition and the consolidation of memories associated with contextual fear (fear of the place of conditioning), but do not affect fear conditioning to discrete cues (e.g., a tone). Blockade of central muscarinic cholinergic receptor activation results in selective acquisition deficits of contextual fear conditioning, but reportedly has little effect on consolidation. Here we show for the first time that direct infusion of the muscarinic cholinergic receptor antagonist, scopolamine, into the dorsal hippocampus produces a dose-dependent deficit in both acquisition and consolidation of contextual fear conditioning, while having no impact on simple tone conditioning.
Zotero Collections:

We investigated whether mindfulness training (MT) influences information processing in a working memory task with complex visual stimuli. Participants were tested before (T1) and after (T2) participation in an intensive one-month MT retreat, and their performance was compared with that of an age- and education-matched control group. Accuracy did not differ across groups at either time point. Response times were faster and significantly less variable in the MT versus the control group at T2. Since these results could be due to changes in mnemonic processes, speed-accuracy trade-off, or nondecisional factors (e.g., motor execution), we used a mathematical modeling approach to disentangle these factors. The EZ-diffusion model (Wagenmakers, van der Maas, & Grasman, Psychonomic Bulletin & Review 14:(1), 3-22, 2007) suggested that MT leads to improved information quality and reduced response conservativeness, with no changes in nondecisional factors. The noisy exemplar model further suggested that the increase in information quality reflected a decrease in encoding noise and not an increase in forgetting. Thus, mathematical modeling may help clarify the mechanisms by which MT produces salutary effects on performance.
Zotero Collections:

This paper briefly reviews the evidence for multistore theories of memory and points out some difficulties with the approach. An alternative framework for human memory research is then outlined in terms of depth or levels of processing. Some current data and arguments are reexamined in the light of this alternative framework and implications for further research considered.

This article presents a conceptual model for the mindfulness-based psychotherapeutic treatment of chronic pain. It describes the process of mindfulness meditation and places it in the context of a practical model for conceptualizing pain. It presents case vignettes on the phenomenology and treatment of chronic pain. Resources for mindfulness are presented.

Although research has found that long-term mindfulness meditation practice promotes executive functioning and the ability to sustain attention, the effects of brief mindfulness meditation training have not been fully explored. We examined whether brief meditation training affects cognition and mood when compared to an active control group. After four sessions of either meditation training or listening to a recorded book, participants with no prior meditation experience were assessed with measures of mood, verbal fluency, visual coding, and working memory. Both interventions were effective at improving mood but only brief meditation training reduced fatigue, anxiety, and increased mindfulness. Moreover, brief mindfulness training significantly improved visuo-spatial processing, working memory, and executive functioning. Our findings suggest that 4 days of meditation training can enhance the ability to sustain attention; benefits that have previously been reported with long-term meditators.

Different forms of learning and memory depend on functionally and anatomically separable neural circuits [Squire, L. R. (1992) Psychol. Rev. 99, 195–231]. Declarative memory relies on a medial temporal lobe system, whereas habit learning relies on the striatum [Cohen, N. J. & Eichenbaum, H. (1993) Memory, Amnesia, and the Hippocampal System (MIT Press, Cambridge, MA)]. How these systems are engaged to optimize learning and behavior is not clear. Here, we present results from functional neuroimaging showing that the presence of a demanding secondary task during learning modulates the degree to which subjects solve a problem using either declarative memory or habit learning. Dual-task conditions did not reduce accuracy but reduced the amount of declarative learning about the task. Medial temporal lobe activity was correlated with task performance and declarative knowledge after learning under single-task conditions, whereas performance was correlated with striatal activity after dual-task learning conditions. These results demonstrate a fundamental difference in these memory systems in their sensitivity to concurrent distraction. The results are consistent with the notion that declarative and habit learning compete to mediate task performance, and they suggest that the presence of distraction can bias this competition. These results have implications for learning in multitask situations, suggesting that, even if distraction does not decrease the overall level of learning, it can result in the acquisition of knowledge that can be applied less flexibly in new situations.

Theories of memory organisation propose that activity knowledge organises autobiographical memory globally. According to these views, memories that share a participant, location, or time are only organised together if they also share an activity. If they do not, they are nested within their respective activity organisations locally rather than being organised together globally. Two experiments that assessed people's clustering of laboratory events consistently obtained findings that contradict this view. Both experiments found that people organise event memories globally in non-activity clusters, cross-classify events into multiple organisations, and pivot between activity and non-activity clusters. Consistent with studies of naturalistic events, these studies of laboratory events indicate that people cross-classify event memories simultaneously into multiple global organisations.
Zotero Collections:

OBJECTIVE: Happiness, sadness, and disgust are three emotions that differ in their valence (positive or negative) and associated action tendencies (approach or withdrawal). This study was designed to investigate the neuroanatomical correlates of these discrete emotions. METHOD: Twelve healthy female subjects were studied. Positron emission tomography and [15O]H2O were used to measure regional brain activity. There were 12 conditions per subject: happiness, sadness, and disgust and three control conditions, each induced by film and recall. Emotion and control tasks were alternated throughout. Condition order was pseudo-randomized and counterbalanced across subjects. Analyses focused on brain activity patterns for each emotion when combining film and recall data. RESULTS: Happiness, sadness, and disgust were each associated with increases in activity in the thalamus and medial prefrontal cortex (Brodmann's area 9). These three emotions were also associated with activation of anterior and posterior temporal structures, primarily when induced by film. Recalled sadness was associated with increased activation in the anterior insula. Happiness was distinguished from sadness by greater activity in the vicinity of ventral mesial frontal cortex. CONCLUSIONS: While this study should be considered preliminary, it identifies regions of the brain that participate in happiness, sadness, and disgust, regions that distinguish between positive and negative emotions, and regions that depend on both the elicitor and valence of emotion or their interaction.
Zotero Collections:

Recent theoretical and empirical work in cognitive science and neuroscience is brought into contact with the concept of the flow experience. After a brief exposition of brain function, the explicit-implicit distinction is applied to the effortless information processing that is so characteristic of the flow state. The explicit system is associated with the higher cognitive functions of the frontal lobe and medial temporal lobe structures and has evolved to increase cognitive flexibility. In contrast, the implicit system is associated with the skill-based knowledge supported primarily by the basal ganglia and has the advantage of being more efficient. From the analysis of this flexibility/efficiency trade-off emerges a thesis that identifies the flow state as a period during which a highly practiced skill that is represented in the implicit system's knowledge base is implemented without interference from the explicit system. It is proposed that a necessary prerequisite to the experience of flow is a state of transient hypofrontality that enables the temporary suppression of the analytical and meta-conscious capacities of the explicit system. Examining sensory-motor integration skills that seem to typify flow such as athletic performance, writing, and free-jazz improvisation, the new framework clarifies how this concept relates to creativity and opens new avenues of research.

Pages

  • Page
  • of 2