Skip to main content Skip to search
Displaying 1 - 13 of 13
Concepts develop for many aspects of experience, including abstract internal states and abstract social activities that do not refer to concrete entities in the world. The current study assessed the hypothesis that, like concrete concepts, distributed neural patterns of relevant nonlinguistic semantic content represent the meanings of abstract concepts. In a novel neuroimaging paradigm, participants processed two abstract concepts (convince, arithmetic) and two concrete concepts (rolling, red) deeply and repeatedly during a concept-scene matching task that grounded each concept in typical contexts. Using a catch trial design, neural activity associated with each concept word was separated from neural activity associated with subsequent visual scenes to assess activations underlying the detailed semantics of each concept. We predicted that brain regions underlying mentalizing and social cognition (e.g., medial prefrontal cortex, superior temporal sulcus) would become active to represent semantic content central to convince, whereas brain regions underlying numerical cognition (e.g., bilateral intraparietal sulcus) would become active to represent semantic content central to arithmetic. The results supported these predictions, suggesting that the meanings of abstract concepts arise from distributed neural systems that represent concept-specific content.
Zotero Collections:

<p>This study was designed to test the hypothesis that Japanese subjects exhibit different patterns of resting EEG asymmetry compared with Westerners. EEG was recorded from the left and right temporal and parietal scalp regions in bilingual Japanese and Western subjects during eyes-open and eyes-closed rest periods before and after the performance of a series of cognitive tasks. Alpha activity was integrated and digitized. Japanese subjects were found to exhibit greater relative right-sided parietal activation during the eyes closed condition. This difference was found to be a function of greater left hemisphere activation among the Westerners. Various possible contributors to this cross-cultural differences are discussed.</p>
Zotero Collections:

<p>How do we, as humans, take in the feelings and thoughts of other people? Theory-of-Mind (ToM) and Embodied Simulation (ES) approaches hypothesize divergent neural and behavioral mechanisms underlying intersubjectivity. ToM investigators assert that humans take in the belief states and intentions of another person by holding "a theory of mind" that cognitively posits the other person's mental contents, with some experiments identifying the right temporo-parietal junction as a specific ToM brain region. ES theorists hypothesize that humans perceive the other's state of mind by simulating his/her actions, emotions, and goals in the "mirror neuron system" in the brain. A historical review suggests these understandings rely on opposing, dualist models of cognition and perception. William James's intervention on this earlier debate is informative in anticipating recent findings in low-level sensory neuroscience. Of specific interest are studies showing that intersubjectivity and low-level sensory attentional filtering are both processed in the same cortical area (the temporo-parietal junction) suggesting that the ability to entertain other minds may be related to the ability to perceive salient stimuli during attention-demanding tasks.</p>
Zotero Collections:

High vs. low scorers on the Beck Depression Inventory (BDI) were compared on measures of resting EEG activation asymmetry from frontal and parietal brain regions. Depressed subjects showed greater relative right frontal activation compared with nondepressed subjects. Parietal asymmetry did not distinguish between the groups. These data support the hypothesis of right hemisphere hyperactivation in the frontal region of depressed individuals and are consistent with the growing body of literature which suggests that the left and right frontal regions may be differentially specialized for particular positive and negative affects.
Zotero Collections:

Research on the anatomical bases of interhemispheric interaction, including individual differences in corpus callosum (CC) anatomy, is reviewed. These anatomical findings form the basis for the discussion of two major themes. The first considers interhemispheric transfer time (IHTT) and related issues. These include varieties of IHTT and possible directional asymmetries of IHTT. Evidence suggests that pathological variations in IHTT may have cognitive consequences. The second involves conditions under which interhemispheric interaction is necessary and beneficial. The data suggest that when both hemispheres have some competence at a difficult task, there is a benefit to interhemispheric interaction. The role of the CC in the dynamic distribution of attention may be particularly relevant to this advantage. Throughout the article reference is made to individual differences and developmental changes associated with interhemispheric interaction.
Zotero Collections:

<p>Previous voxel-based morphometry (VBM) studies have revealed that meditation is associated with structural brain changes in regions underlying cognitive processes that are required for attention or mindfulness during meditation. This VBM study examined brain changes related to the practice of an emotion-oriented meditation: loving-kindness meditation (LKM). A 3 T magnetic resonance imaging (MRI) scanner captured images of the brain structures of 25 men, 10 of whom had practiced LKM in the Theravada tradition for at least 5 years. Compared with novices, more gray matter volume was detected in the right angular and posterior parahippocampal gyri in LKM experts. The right angular gyrus has not been previously reported to have structural differences associated with meditation, and its specific role in mind and cognitive empathy theory suggests the uniqueness of this finding for LKM practice. These regions are important for affective regulation associated with empathic response, anxiety and mood. At the same time, gray matter volume in the left temporal lobe in the LKM experts appeared to be greater, an observation that has also been reported in previous MRI meditation studies on meditation styles other than LKM. Overall, the findings of our study suggest that experience in LKM may influence brain structures associated with affective regulation.</p>

<p>We conducted two fMRI studies to investigate the sensitivity of delay-period activity to changes in memory load during a delayed-recognition task for faces. In Experiment 1, each trial began with the presentation of a memory array consisting of one, two, or three faces that lasted for 3 sec. A 15-sec delay period followed during which no stimuli were present. The delay interval concluded with a one-face probe to which subjects made a button press response indicating whether this face was part of the memory array. Experiment 2 was similar in design except that the delay period was lengthened to 24 sec, and the memory array consisted of only one or three faces. We hypothesized that memory maintenance processes that spanned the delay interval would be revealed by their sensitivity to memory load. Long delay intervals were employed to temporally dissociate phasic activity engendered by the memory array from sustained activity reflecting maintenance. Regions of interest (ROIs) were defined anatomically for the superior frontal gyri (SFG), middle frontal gyri (MFG), and inferior frontal gyri (IFG), intraparietal sulci (IPS), and fusiform gyri (FFG) on a subject-by-subject basis. The mean time course of activity was determined for all voxels within these regions and for that subset of voxels within each ROI that correlated significantly with an empirically determined reference waveform. In both experiments, memory load significantly influenced activation 6--9 sec following the onset of the memory array with larger amplitude responses for higher load levels. Responses were greatest within MFG, IPS, and FFG. In both experiments, however, these load-sensitive differences declined over successive time intervals and were no longer significant at the end of the delay interval. Although insensitive to our load manipulation, sustained activation was present at the conclusion of the delay interval within MFG and other prefrontal regions. IPS delay activity returned to prestimulus baseline levels prior to the end of the delay period in Experiment 2, but not in Experiment 1. Within FFG, delay activity returned to prestimulus baseline levels prior to the conclusion of the delay interval in both experiments. Thus, while phasic processes engendered by the memory array were strongly affected by memory load, no evidence for load-sensitive delay-spanning maintenance processes was obtained.</p>
Zotero Collections:

Based on previous findings in humans and rhesus monkeys suggesting that diazepam has asymmetrical effects on frontal lobe activity and other literature supporting a role for the benzodiazepine system in the mediation of individual differences in anxiety and fearfulness, the relation between asymmetrical changes in scalp-recorded regional brain activity in response to diazepam and the temperamental dimension of behavioral inhibition indexed by freezing time in 9 rhesus monkeys was examined. Animals showed greater relative left-sided frontal activation in response to diazepam compared with the preceding baseline. The magnitude of this shift was strongly correlated with an aggregate measure of freezing time (r = .82). The implications of these findings for understanding the role of regional differences in the benzodiazepine system in mediating individual differences in fearfulness are discussed.
Zotero Collections:

Meditation refers to a family of mental training practices that are designed to familiarize the practitioner with specific types of mental processes. One of the most basic forms of meditation is concentration meditation, in which sustained attention is focused on an object such as a small visual stimulus or the breath. In age-matched participants, using functional MRI, we found that activation in a network of brain regions typically involved in sustained attention showed an inverted u-shaped curve in which expert meditators (EMs) with an average of 19,000 h of practice had more activation than novices, but EMs with an average of 44,000 h had less activation. In response to distracter sounds used to probe the meditation, EMs vs. novices had less brain activation in regions related to discursive thoughts and emotions and more activation in regions related to response inhibition and attention. Correlation with hours of practice suggests possible plasticity in these mechanisms.
Zotero Collections:

Working memory (WM) comprises operations whose coordinated action contributes to our ability to maintain focus on goal-relevant information in the presence of distraction. The present study investigated the nature of distraction upon the neural correlates of WM maintenance operations by presenting task-irrelevant distracters during the interval between the memoranda and probes of a delayed-response WM task. The study used a region of interest (ROIs) approach to investigate the role of anterior (e.g., lateral and medial prefrontal cortex--PFC) and posterior (e.g., parietal and fusiform cortices) brain regions that have been previously associated with WM operations. Behavioral results showed that distracters that were confusable with the memorandum impaired WM performance, compared to either the presence of non-confusable distracters or to the absence of distracters. These different levels of distraction led to differences in the regional patterns of delay interval activity measured with event-related functional magnetic resonance imaging (fMRI). In the anterior ROIs, dorsolateral PFC activation was associated with WM encoding and maintenance, and in maintaining a preparatory state, and ventrolateral PFC activation was associated with the inhibition of distraction. In the posterior ROIs, activation of the posterior parietal and fusiform cortices was associated with WM and perceptual processing, respectively. These findings provide novel evidence concerning the neural systems mediating the cognitive and behavioral responses during distraction, and places frontal cortex at the top of the hierarchy of the neural systems responsible for cognitive control.
Zotero Collections:

Four U.S. sites formed a consortium to conduct a multisite study of fMRI methods. The primary purpose of this consortium was to examine the reliability and reproducibility of fMRI results. FMRI data were collected on healthy adults during performance of a spatial working memory task at four different institutions. Two sets of data from each institution were made available. First, data from two subjects were made available from each site and were processed and analyzed as a pooled data set. Second, statistical maps from five to eight subjects per site were made available. These images were aligned in stereotactic space and common regions of activation were examined to address the reproducibility of fMRI results when both image acquisition and analysis vary as a function of site. Our grouped and individual data analyses showed reliable patterns of activation in dorsolateral prefrontal cortex and posterior parietal cortex during performance of the working memory task across all four sites. This multisite study, the first of its kind using fMRI data, demonstrates highly consistent findings across sites.
Zotero Collections:

We investigated the top-down influence of working memory (WM) maintenance on feedforward perceptual processing within occipito-temporal face processing structures. During event-related potential (ERP) recordings, subjects performed a delayed-recognition task requiring WM maintenance of faces or houses. The face-sensitive N170 component elicited by delay-spanning task-irrelevant grayscale noise probes was examined. If early feedforward perceptual activity is biased by maintenance requirements, the N170 ERP component elicited by probes should have a greater N170 amplitude response during face relative to house WM trials. Consistent with this prediction, N170 elicited by probes presented at the beginning, middle, and end of the delay interval was greater in amplitude during face relative to house WM. Thus, these results suggest that WM maintenance demands may modulate early feedforward perceptual processing for the entirety of the delay duration. We argue based on these results that temporally early biasing of domain-specific perceptual processing may be a critical mechanism by which WM maintenance is achieved.
Zotero Collections: