Skip to main content Skip to search
Displaying 26 - 50 of 84

Pages

  • Page
  • of 4
BACKGROUND: Relationships between aberrant social functioning and depression have been explored via behavioral, clinical, and survey methodologies, highlighting their importance in the etiology of depression. The neural underpinnings of these relationships, however, have not been explored. METHODS: Nine depressed participants and 14 never-depressed control subjects viewed emotional and neutral pictures at two functional magnetic resonance imaging (fMRI) scanning sessions approximately 22 weeks apart. In the interim, depressed patients received the antidepressant Venlafaxine. Positively rated images were parsed into three separate comparisons: social interaction, human faces, and sexual images; across scanning session, activation to these images was compared with other positively rated images. RESULTS: For each of the three social stimulus types (social interaction, faces, sexual images), a distinguishable circuitry was activated equally in non-depressed control subjects and post-treatment depressed subjects but showed a hypo-response in the depressed group pre-treatment. These structures include regions of prefrontal, temporal, and parietal cortices, insula, basal ganglia, and the hippocampus. CONCLUSIONS: The neural hypo-response to positively valenced social stimuli that is observed in depression remits as response to antidepressant medication occurs, suggesting a state-dependent deficiency in response to positive social incentives. These findings underscore the importance of addressing social dysfunction in research and treatment of depression.
Zotero Collections:

<p>Examined whether children with dyslexia (DYS) differ from matched controls on visual evoked potential measures of interhemispheric transfer time (IHTT). 20 right-handed boys (aged 9–12 yrs), 10 with DYS and 10 with normal reading ability, were selected to participate based on a battery of neuropsychological and reading tests. Checkerboard flashes were presented to Ss hemiretinally while evoked responses were recorded from right and left side occipital scalp locations. IHTT was computed separately in response to right and left visual field presentations. Ss with DYS were found to have faster IHTT from right-to-left hemisphere and slower IHTT from left-to-right hemisphere compared with controls. Evoked potential measures of IHTT accounted for significant variance in measures of reading and related cognitive skills.</p>
Zotero Collections:

BACKGROUND: Two core characteristics of pathologic fear are its rapid onset and resistance to cognitive regulation. We hypothesized that activation of the amygdala early in the presentation of fear-relevant visual stimuli would distinguish phobics from nonphobics. METHODS: Chronometry of amygdala activation to phobia-relevant pictures was assessed in 13 spider phobics and 14 nonphobics using functional magnetic resonance imaging (fMRI). RESULTS: Blood oxygen level-dependent (BOLD) responses in the amygdala early in picture processing consistently differentiated between phobic and nonphobic subjects, as well as between phobogenic and nonphobogenic stimuli among phobics. Furthermore, amygdalar BOLD responses associated with timing but not magnitude of activation predicted affective responses to phobogenic stimuli. Computational modeling procedures were used to identify patterns of neural activation in the amygdala that could yield the observed BOLD data. These data suggest that phobic responses were characterized by strong but brief amygdala responses, whereas nonphobic responses were weaker and more sustained. CONCLUSIONS: Results are discussed in the context of the amygdala's role in rapid threat detection and the vigilance-avoidance hypothesis of anxiety. These data highlight the importance of examining the neural substrates of the immediate impact of phobogenic stimuli for understanding pathological fear.
Zotero Collections:

Individuals differ dramatically in the quality and intensity of their response to affectively evocative stimuli. On the basis of prior theory and research, we hypothesized that these individual differences are related to variation in activation of the left and right frontal brain regions. We recorded baseline brain electrical activity from subjects on two occasions 3 weeks apart. Immediately following the second recording, subjects were exposed to brief positive and negative emotional film clips. For subjects whose frontal asymmetry was stable across the 3-week period, greater left frontal activation was associated with reports of more intense positive affect in response to the positive films, whereas greater right frontal activation was associated with more intense reports of negative affect in response to the negative film clips. The methodological and theoretical implications of these data are discussed.
Zotero Collections:

BACKGROUND: Functional magnetic resonance imaging (fMRI) holds promise as a noninvasive means of identifying neural responses that can be used to predict treatment response before beginning a drug trial. Imaging paradigms employing facial expressions as presented stimuli have been shown to activate the amygdala and anterior cingulate cortex (ACC). Here, we sought to determine whether pretreatment amygdala and rostral ACC (rACC) reactivity to facial expressions could predict treatment outcomes in patients with generalized anxiety disorder (GAD). METHODS: Fifteen subjects (12 female subjects) with GAD participated in an open-label venlafaxine treatment trial. Functional magnetic resonance imaging responses to facial expressions of emotion collected before subjects began treatment were compared with changes in anxiety following 8 weeks of venlafaxine administration. In addition, the magnitude of fMRI responses of subjects with GAD were compared with that of 15 control subjects (12 female subjects) who did not have GAD and did not receive venlafaxine treatment. RESULTS: The magnitude of treatment response was predicted by greater pretreatment reactivity to fearful faces in rACC and lesser reactivity in the amygdala. These individual differences in pretreatment rACC and amygdala reactivity within the GAD group were observed despite the fact that 1) the overall magnitude of pretreatment rACC and amygdala reactivity did not differ between subjects with GAD and control subjects and 2) there was no main effect of treatment on rACC-amygdala reactivity in the GAD group. CONCLUSIONS: These findings show that this pattern of rACC-amygdala responsivity could prove useful as a predictor of venlafaxine treatment response in patients with GAD.
Zotero Collections:

<p>BACKGROUND: Functional magnetic resonance imaging (fMRI) techniques were used to identify the neural circuitry underlying emotional processing in control and depressed subjects. Depressed subjects were studied before and after treatment with venlafaxine. This new technique provides a method to noninvasively image regional brain function with unprecedented spatial and temporal resolution. METHOD: Echo-planar imaging was used to acquire whole brain images while subjects viewed positively and negatively valenced visual stimuli. Two control subjects and two depressed subjects who met DSM-IV criteria for major depression were scanned at baseline and 2 weeks later. Depressed subjects were treated with venlafaxine after the baseline scan. RESULTS: Preliminary results from this ongoing study revealed three interesting trends in the data. Both depressed patients demonstrated considerable symptomatic improvement at the time of the second scan. Across control and depressed subjects, the negative compared with the positive pictures elicited greater global activation. In both groups, activation induced by the negative pictures decreased from the baseline scan to the 2-week scan. This decrease in activation was also present in the control subjects when they were exposed to the positive pictures. In contrast, when the depressed subjects were presented with the positive pictures they showed no activation at baseline, whereas after 2 weeks of treatment an area of activation emerged in right secondary visual cortex. CONCLUSION: While preliminary, these results demonstrate the power of using fMRI to study emotional processes in normal and depressed subjects and to examine mechanisms of action of antidepressant drugs.</p>
Zotero Collections:

The capacity to anticipate aversive circumstances is central not only to successful adaptation but also to understanding the abnormalities that contribute to excessive worry and anxiety disorders. Forecasting and reacting to aversive events mobilize a host of affective and cognitive capacities and corresponding brain processes. Rapid event-related functional magnetic resonance imaging (fMRI) in 21 healthy volunteers assessed the overlap and divergence in the neural instantiation of anticipating and being exposed to aversive pictures. Brain areas jointly activated by the anticipation of and exposure to aversive pictures included the dorsal amygdala, anterior insula, dorsal anterior cingulate cortex (ACC), right dorsolateral prefrontal cortex (DLPFC), and right posterior orbitofrontal cortex (OFC). Anticipatory processes were uniquely associated with activations in rostral ACC, a more superior sector of the right DLPFC, and more medial sectors of the bilateral OFC. Activation of the right DLPFC in anticipation of aversion was associated with self-reports of increased negative affect, whereas OFC activation was associated with increases in both positive and negative affect. These results show that anticipation of aversion recruits key brain regions that respond to aversion, thereby potentially enhancing adaptive responses to aversive events.
Zotero Collections:

Recent studies have identified a distributed network of brain regions thought to support cognitive reappraisal processes underlying emotion regulation in response to affective images, including parieto-temporal regions and lateral/medial regions of prefrontal cortex (PFC). A number of these commonly activated regions are also known to underlie visuospatial attention and oculomotor control, which raises the possibility that people use attentional redeployment rather than, or in addition to, reappraisal as a strategy to regulate emotion. We predicted that a significant portion of the observed variance in brain activation during emotion regulation tasks would be associated with differences in how participants visually scan the images while regulating their emotions. We recorded brain activation using fMRI and quantified patterns of gaze fixation while participants increased or decreased their affective response to a set of affective images. fMRI results replicated previous findings on emotion regulation with regulation differences reflected in regions of PFC and the amygdala. In addition, our gaze fixation data revealed that when regulating, individuals changed their gaze patterns relative to a control condition. Furthermore, this variation in gaze fixation accounted for substantial amounts of variance in brain activation. These data point to the importance of controlling for gaze fixation in studies of emotion regulation that use visual stimuli.
Zotero Collections:

Research on the anatomical bases of interhemispheric interaction, including individual differences in corpus callosum (CC) anatomy, is reviewed. These anatomical findings form the basis for the discussion of two major themes. The first considers interhemispheric transfer time (IHTT) and related issues. These include varieties of IHTT and possible directional asymmetries of IHTT. Evidence suggests that pathological variations in IHTT may have cognitive consequences. The second involves conditions under which interhemispheric interaction is necessary and beneficial. The data suggest that when both hemispheres have some competence at a difficult task, there is a benefit to interhemispheric interaction. The role of the CC in the dynamic distribution of attention may be particularly relevant to this advantage. Throughout the article reference is made to individual differences and developmental changes associated with interhemispheric interaction.
Zotero Collections:

<p>Several recent studies using functional magnetic resonance imaging (fMRI) during recognition memory tests have suggested that the ability to neuromodulate as a function of cognitive demand may be impaired in older adults due to age-related cell loss and neural volume reduction in memory specific regions. In the current study, older adults (ages 59-77) were tested with fMRI during a delayed-recognition task in which memory load for faces was varied across trials. Activity was greater in amplitude for three- versus one-face stimuli within the superior, middle, and inferior frontal gyri, intraparietal sulcus, and fusiform gyrus. It was concluded that the ability to modulate activity with increasing load is preserved in older adults despite reductions in neural volume.</p>
Zotero Collections:

Using functional magnetic resonance imaging, we examined whether individual differences in amygdala activation in response to negative relative to neutral information are related to differences in the speed with which such information is evaluated, the extent to which such differences are associated with medial prefrontal cortex function, and their relationship with measures of trait anxiety and psychological well-being (PWB). Results indicated that faster judgments of negative relative to neutral information were associated with increased left and right amygdala activation. In the prefrontal cortex, faster judgment time was associated with relative decreased activation in a cluster in the ventral anterior cingulate cortex (ACC, BA 24). Furthermore, people who were slower to evaluate negative versus neutral information reported higher PWB. Importantly, higher PWB was strongly associated with increased activation in the ventral ACC for negative relative to neutral information. Individual differences in trait anxiety did not predict variation in judgment time or in amygdala or ventral ACC activity. These findings suggest that people high in PWB effectively recruit the ventral ACC when confronted with potentially aversive stimuli, manifest reduced activity in subcortical regions such as the amygdala, and appraise such information as less salient as reflected in slower evaluative speed.
Zotero Collections:

The degree to which perceived controllability alters the way a stressor is experienced varies greatly among individuals. We used functional magnetic resonance imaging to examine the neural activation associated with individual differences in the impact of perceived controllability on self-reported pain perception. Subjects with greater activation in response to uncontrollable (UC) rather than controllable (C) pain in the pregenual anterior cingulate cortex (pACC), periaqueductal gray (PAG), and posterior insula/SII reported higher levels of pain during the UC versus C conditions. Conversely, subjects with greater activation in the ventral lateral prefrontal cortex (VLPFC) in anticipation of pain in the UC versus C conditions reported less pain in response to UC versus C pain. Activation in the VLPFC was significantly correlated with the acceptance and denial subscales of the COPE inventory [Carver, C. S., Scheier, M. F., & Weintraub, J. K. Assessing coping strategies: A theoretically based approach. Journal of Personality and Social Psychology, 56, 267-283, 1989], supporting the interpretation that this anticipatory activation was associated with an attempt to cope with the emotional impact of uncontrollable pain. A regression model containing the two prefrontal clusters (VLPFC and pACC) predicted 64% of the variance in pain rating difference, with activation in the two additional regions (PAG and insula/SII) predicting almost no additional variance. In addition to supporting the conclusion that the impact of perceived controllability on pain perception varies highly between individuals, these findings suggest that these effects are primarily top-down, driven by processes in regions of the prefrontal cortex previously associated with cognitive modulation of pain and emotion regulation.
Zotero Collections:

Attention to internal body sensations is practiced in most meditation traditions. Many traditions state that this practice results in increased awareness of internal body sensations, but scientific studies evaluating this claim are lacking. We predicted that experienced meditators would display performance superior to that of nonmeditators on heartbeat detection, a standard noninvasive measure of resting interoceptive awareness. We compared two groups of meditators (Tibetan Buddhist and Kundalini) to an age- and body mass index-matched group of nonmeditators. Contrary to our prediction, we found no evidence that meditators were superior to nonmeditators in the heartbeat detection task, across several sessions and respiratory modulation conditions. Compared to nonmeditators, however, meditators consistently rated their interoceptive performance as superior and the difficulty of the task as easier. These results provide evidence against the notion that practicing attention to internal body sensations, a core feature of meditation, enhances the ability to sense the heartbeat at rest.
Zotero Collections:

Social contact promotes enhanced health and well-being, likely as a function of the social regulation of emotional responding in the face of various life stressors. For this functional magnetic resonance imaging (fMRI) study, 16 married women were subjected to the threat of electric shock while holding their husband's hand, the hand of an anonymous male experimenter, or no hand at all. Results indicated a pervasive attenuation of activation in the neural systems supporting emotional and behavioral threat responses when the women held their husband's hand. A more limited attenuation of activation in these systems occurred when they held the hand of a stranger. Most strikingly, the effects of spousal hand-holding on neural threat responses varied as a function of marital quality, with higher marital quality predicting less threat-related neural activation in the right anterior insula, superior frontal gyrus, and hypothalamus during spousal, but not stranger, hand-holding.
Zotero Collections:

The capacity to stabilize the content of attention over time varies among individuals, and its impairment is a hallmark of several mental illnesses. Impairments in sustained attention in patients with attention disorders have been associated with increased trial-to-trial variability in reaction time and event-related potential deficits during attention tasks. At present, it is unclear whether the ability to sustain attention and its underlying brain circuitry are transformable through training. Here, we show, with dichotic listening task performance and electroencephalography, that training attention, as cultivated by meditation, can improve the ability to sustain attention. Three months of intensive meditation training reduced variability in attentional processing of target tones, as indicated by both enhanced theta-band phase consistency of oscillatory neural responses over anterior brain areas and reduced reaction time variability. Furthermore, those individuals who showed the greatest increase in neural response consistency showed the largest decrease in behavioral response variability. Notably, we also observed reduced variability in neural processing, in particular in low-frequency bands, regardless of whether the deviant tone was attended or unattended. Focused attention meditation may thus affect both distracter and target processing, perhaps by enhancing entrainment of neuronal oscillations to sensory input rhythms, a mechanism important for controlling the content of attention. These novel findings highlight the mechanisms underlying focused attention meditation and support the notion that mental training can significantly affect attention and brain function.
Zotero Collections:

Mindfulness is defined as paying attention in the present moment. We investigate the hypothesis that mindfulness training may alter or enhance specific aspects of attention. We examined three functionally and neuroanatomically distinct but overlapping attentional subsystems: alerting, orienting, and conflict monitoring. Functioning of each subsystem was indexed by performance on the Attention Network Test. Two types of mindfulness training (MT) programs were examined, and behavioral testing was conducted on participants before (Time 1) and after (Time 2) training. One training group consisted of individuals naive to mindfulness techniques who participated in an 8-week mindfulness-based stress reduction (MBSR) course that emphasized the development of concentrative meditation skills. The other training group consisted of individuals experienced in concentrative meditation techniques who participated in a 1-month intensive mindfulness retreat. Performance of these groups was compared with that of control participants who were meditation naive and received no MT. At Time 1, the participants in the retreat group demonstrated improved conflict monitoring performance relative to those in the MBSR and control groups. At Time 2, the participants in the MBSR course demonstrated significantly improved orienting in comparison with the control and retreat participants. In contrast, the participants in the retreat group demonstrated altered performance on the alerting component, with improvements in exogenous stimulus detection in comparison with the control and MBSR participants. The groups did not differ in conflict monitoring performance at Time 2. These results suggest that mindfulness training may improve attention-related behavioral responses by enhancing functioning of specific subcomponents of attention. Whereas participation in the MBSR course improved the ability to endogenously orient attention, retreat participation appeared to allow for the development and emergence of receptive attentional skills, which improved exogenous alerting-related process.
Zotero Collections:

Lesion and neuroimaging studies suggest the amygdala is important in the perception and production of negative emotion; however, the effects of emotion regulation on the amygdalar response to negative stimuli remain unknown. Using event-related fMRI, we tested the hypothesis that voluntary modulation of negative emotion is associated with changes in neural activity within the amygdala. Negative and neutral pictures were presented with instructions to either "maintain" the emotional response or "passively view" the picture without regulating the emotion. Each picture presentation was followed by a delay, after which subjects indicated how they currently felt via a response keypad. Consistent with previous reports, greater signal change was observed in the amygdala during the presentation of negative compared to neutral pictures. No significant effect of instruction was found during the picture presentation component of the trial. However, a prolonged increase in signal change was observed in the amygdala when subjects maintained the negative emotional response during the delay following negative picture offset. This increase in amygdalar signal due to the active maintenance of negative emotion was significantly correlated with subjects' self-reported dispositional levels of negative affect. These results suggest that consciously evoked cognitive mechanisms that alter the emotional response of the subject operate, at least in part, by altering the degree of neural activity within the amygdala.
Zotero Collections:

Although there is much evidence demonstrating muscle tension changes during mental work, there are few data concerning muscle tension patterns during effortful attention to simple sensory stimuli. In the present study, sensory attention was evoked by a pitch discrimination task at three levels of difficulty, with a digit retention task administered for comparison. Twenty-four females each performed both tasks at all levels of difficulty, while the EKG, and the corrugator supercilii, frontalis, lip, jaw, chin, and forearm area EMG were recorded. As expected, heart rate decreased significantly with increasing difficulty of the pitch task. A pattern of facial EMG responses accompanied the pitch task, which included significant increases in corrugator and frontalis, and decreases in the jaw as a function of difficulty, and time within trials. The tension pattern observed during sensory intake is discussed in terms of its relation to emotional expressions and motor theories of attention.
Zotero Collections:

OBJECTIVE: Positron emission tomography was used to investigate the neural substrates of normal human emotional and their dependence on the types of emotional stimulus. METHOD: Twelve healthy female subjects underwent 12 measurements of regional brain activity following the intravenous bolus administration of [15O]H2O as they alternated between emotion-generating and control film and recall tasks. Automated image analysis techniques were used to characterize and compare the increases in regional brain activity associated with the emotional response to complex visual (film) and cognitive (recall) stimuli. RESULTS: Film- and recall-generated emotion were each associated with significantly increased activity in the vicinity of the medial prefrontal cortex and thalamus, suggesting that these regions participate in aspects of emotion that do not depend on the nature of the emotional stimulus. Film-generated emotion was associated with significantly greater increases in activity bilaterally in the occipitotemporparietal cortex, lateral cerebellum, hypothalamus, and a region that includes the anterior temporal cortex, amygdala, and hippocampal formation, suggesting that these regions participate in the emotional response to certain exteroceptive sensory stimuli. Recall-generated sadness was associated with significantly greater increases in activity in the vicinity of the anterior insular cortex, suggesting that this region participates in the emotional response to potentially distressing cognitive or interoceptive sensory stimuli. CONCLUSIONS: While this study should be considered preliminary, it identified brain regions that participate in externally and internally generated human emotion.
Zotero Collections:

OBJECTIVE: Happiness, sadness, and disgust are three emotions that differ in their valence (positive or negative) and associated action tendencies (approach or withdrawal). This study was designed to investigate the neuroanatomical correlates of these discrete emotions. METHOD: Twelve healthy female subjects were studied. Positron emission tomography and [15O]H2O were used to measure regional brain activity. There were 12 conditions per subject: happiness, sadness, and disgust and three control conditions, each induced by film and recall. Emotion and control tasks were alternated throughout. Condition order was pseudo-randomized and counterbalanced across subjects. Analyses focused on brain activity patterns for each emotion when combining film and recall data. RESULTS: Happiness, sadness, and disgust were each associated with increases in activity in the thalamus and medial prefrontal cortex (Brodmann's area 9). These three emotions were also associated with activation of anterior and posterior temporal structures, primarily when induced by film. Recalled sadness was associated with increased activation in the anterior insula. Happiness was distinguished from sadness by greater activity in the vicinity of ventral mesial frontal cortex. CONCLUSIONS: While this study should be considered preliminary, it identifies regions of the brain that participate in happiness, sadness, and disgust, regions that distinguish between positive and negative emotions, and regions that depend on both the elicitor and valence of emotion or their interaction.
Zotero Collections:

The nature of the affective deficit that characterizes social anhedonia is not well understood. Emotionally evocative visual stimuli were presented to undergraduates identified as anhedonic or normal, based on their scores on the revised Social Anhedonia Scale. The affective stimuli were chosen to elicit positive and negative emotion; a subset of slides were specifically chosen to include social-interpersonal content. In the acoustic startle paradigm, participants were administered startle probes (50-ms 95 dB white noise bursts) while viewing images from the International Affective Picture System. Socially anhedonic individuals did not differ from normally hedonic individuals in terms of their physiological response to the stimuli, regardless of the nature of the content of the stimuli. However, on the self-report measures of trait affectivity, the socially anhedonic individuals reported significantly lower levels of positive affect and higher levels of negative affect. These findings suggest that the affective deficits reported by socially anhedonic individuals are not global in nature.
Zotero Collections:

Positive affect elicited in a mother toward her newborn infant may be one of the most powerful and evolutionarily preserved forms of positive affect in the emotional landscape of human behavior. This study examined the neurobiology of this form of positive emotion and in so doing, sought to overcome the difficulty of eliciting robust positive affect in response to visual stimuli in the physiological laboratory. Six primiparous human mothers with no indications of postpartum depression brought their infants into the laboratory for a photo shoot. Approximately 6 weeks later, they viewed photographs of their infant, another infant, and adult faces during acquisition of functional magnetic resonance images (fMRI). Mothers exhibited bilateral activation of the orbitofrontal cortex (OFC) while viewing pictures of their own versus unfamiliar infants. While in the scanner, mothers rated their mood more positively for pictures of their own infants than for unfamiliar infants, adults, or at baseline. The orbitofrontal activation correlated positively with pleasant mood ratings. In contrast, areas of visual cortex that also discriminated between own and unfamiliar infants were unrelated to mood ratings. These data implicate the orbitofrontal cortex in a mother's affective responses to her infant, a form of positive emotion that has received scant attention in prior human neurobiological studies. Furthermore, individual variations in orbitofrontal activation to infant stimuli may reflect an important dimension of maternal attachment.
Zotero Collections:

There is mounting evidence that prefrontal cortex (PFC) is activated during mnemonic operations such as working memory maintenance and also during response-related operations. In the current study, we examine the neural organization of mnemonic and response operations with respect to each other within PFC. Stimulus-evoked and sustained functional MRI activity was recorded during performance of a mental calculation task. The presence or absence of mnemonic and response demands was manipulated in a 2 x 2 factorial design with conditions requiring: (1) memory encoding and maintenance (M+); (2) response selection and execution (R+); (3) encoding, maintenance, and response execution (M+R+); (4) neither mnemonic nor response-related processes (M-R-). The first step of the analyses identified PFC voxels exhibiting differential activity during (M+) vs. (R+) trials. Within these voxels, we then examined activity during multiple phases of (M+R+) trials. Greater stimulus-evoked and sustained activity was observed within the anterior extent of dorsolateral prefrontal cortex (BA 46) during R+ vs. M+ trials. In contrast, greater activity was observed in the posterior extent of dorsolateral PFC during M+ vs. R+ trials. Importantly, both regions were activated during (M+R+) trials. Activity levels during all of these conditions exceeded levels observed during (M-R-) control trials. These results suggest that integrative functions of PFC that allow past information to guide future actions may emerge from communication between discrete subregions supporting mnemonic and response operations.
Zotero Collections:

Pages

  • Page
  • of 4