Skip to main content Skip to search
Displaying 1 - 25 of 81

Pages

  • Page
  • of 4
To test the effects of cortisol on affective experience, the authors orally administered a placebo, 20 mg cortisol, or 40 mg cortisol to 85 men. Participants' affective responses to negative and neutral stimuli were measured. Self-reported affective state was also assessed. Participants in the 40-mg group (showing extreme cortisol elevations within the physiological range) rated neutral stimuli as more highly arousing than did participants in the placebo and 20-mg groups. Furthermore, within the 20-mg group, individuals with higher cortisol elevations made higher arousal ratings of neutral stimuli. However, cortisol was unrelated to self-reported affective state. Thus, findings indicate that acute cortisol elevations cause heightened arousal in response to objectively nonarousing stimuli, in the absence of effects on mood.
Zotero Collections:

Functional neuroimaging studies have implicated the fusiform gyri (FG) in structural encoding of faces, while event-related potential (ERP) and magnetoencephalography studies have shown that such encoding occurs approximately 170 ms poststimulus. Behavioral and functional neuroimaging studies suggest that processes involved in face recognition may be strongly modulated by socially relevant information conveyed by faces. To test the hypothesis that affective information indeed modulates early stages of face processing, ERPs were recorded to individually assessed liked, neutral, and disliked faces and checkerboard-reversal stimuli. At the N170 latency, the cortical three-dimensional distribution of current density was computed in stereotactic space using a tomographic source localization technique. Mean activity was extracted from the FG, defined by structure-probability maps, and a meta-cluster delineated by the coordinates of the voxel with the strongest face-sensitive response from five published functional magnetic resonance imaging studies. In the FG, approximately 160 ms poststimulus, liked faces elicited stronger activation than disliked and neutral faces and checkerboard-reversal stimuli. Further, confirming recent results, affect-modulated brain electrical activity started very early in the human brain (approximately 112 ms). These findings suggest that affective features conveyed by faces modulate structural face encoding. Behavioral results from an independent study revealed that the stimuli were not biased toward particular facial expressions and confirmed that liked faces were rated as more attractive. Increased FG activation for liked faces may thus be interpreted as reflecting enhanced attention due to their saliency.
Zotero Collections:

This article reviews the author's program of research on the neural substrates of emotion and affective style and their behavioral and peripheral biological correlates. Two core dimensions along which affect is organized are approach and withdrawal. Some of the key circuitry underlying approach and withdrawal components of emotion is reviewed with an emphasis on the role played by different sectors of the prefrontal cortex (PFC) and amygdala. Affective style refers to individual differences in valence-specific features of emotional reactivity and regulation. The different parameters of affective style can be objectively measured using specific laboratory probes. Relations between individual differences in prefrontal and amygdala function and specific components of affective style are illustrated. The final section of the article concludes with a brief discussion of plasticity in the central circuitry of emotion and the possibility that this circuitry can be shaped by training experiences that might potentially promote a more resilient, positive affective style. The implications of this body of work for a broader conception of psychophysiology and for training the next generation of psychophysiologists are considered in the conclusion.
Zotero Collections:

<p>Humans often judge others egocentrically, assuming that they feel or think similarly to themselves. Emotional egocentricity bias (EEB) occurs in situations when others feel differently to oneself. Using a novel paradigm, we investigated the neurocognitive mechanisms underlying the developmental capacity to overcome such EEB in children compared with adults. We showed that children display a stronger EEB than adults and that this correlates with reduced activation in right supramarginal gyrus (rSMG) as well as reduced coupling between rSMG and left dorsolateral prefrontal cortex (lDLPFC) in children compared with adults. Crucially, functional recruitment of rSMG was associated with age-related differences in cortical thickness of this region. Although in adults the mere presence of emotional conflict occurs between self and other recruited rSMG, rSMG-lDLPFC coupling was only observed when implementing empathic judgements. Finally, resting state analyses comparing connectivity patterns of rSMG with that of right temporoparietal junction suggested a unique role of rSMG for self-other distinction in the emotional domain for adults as well as for children. Thus, children’s difficulties in overcoming EEB may be due to late maturation of regions distinguishing between conflicting socio-affective information and relaying this information to regions necessary for implementing accurate judgments.</p>
Zotero Collections:

OBJECTIVE: The underlying changes in biological processes that are associated with reported changes in mental and physical health in response to meditation have not been systematically explored. We performed a randomized, controlled study on the effects on brain and immune function of a well-known and widely used 8-week clinical training program in mindfulness meditation applied in a work environment with healthy employees. METHODS: We measured brain electrical activity before and immediately after, and then 4 months after an 8-week training program in mindfulness meditation. Twenty-five subjects were tested in the meditation group. A wait-list control group (N = 16) was tested at the same points in time as the meditators. At the end of the 8-week period, subjects in both groups were vaccinated with influenza vaccine. RESULTS: We report for the first time significant increases in left-sided anterior activation, a pattern previously associated with positive affect, in the meditators compared with the nonmeditators. We also found significant increases in antibody titers to influenza vaccine among subjects in the meditation compared with those in the wait-list control group. Finally, the magnitude of increase in left-sided activation predicted the magnitude of antibody titer rise to the vaccine. CONCLUSIONS: These findings demonstrate that a short program in mindfulness meditation produces demonstrable effects on brain and immune function. These findings suggest that meditation may change brain and immune function in positive ways and underscore the need for additional research.

OBJECTIVE: The underlying changes in biological processes that are associated with reported changes in mental and physical health in response to meditation have not been systematically explored. We performed a randomized, controlled study on the effects on brain and immune function of a well-known and widely used 8-week clinical training program in mindfulness meditation applied in a work environment with healthy employees. METHODS: We measured brain electrical activity before and immediately after, and then 4 months after an 8-week training program in mindfulness meditation. Twenty-five subjects were tested in the meditation group. A wait-list control group (N = 16) was tested at the same points in time as the meditators. At the end of the 8-week period, subjects in both groups were vaccinated with influenza vaccine. RESULTS: We report for the first time significant increases in left-sided anterior activation, a pattern previously associated with positive affect, in the meditators compared with the nonmeditators. We also found significant increases in antibody titers to influenza vaccine among subjects in the meditation compared with those in the wait-list control group. Finally, the magnitude of increase in left-sided activation predicted the magnitude of antibody titer rise to the vaccine. CONCLUSIONS: These findings demonstrate that a short program in mindfulness meditation produces demonstrable effects on brain and immune function. These findings suggest that meditation may change brain and immune function in positive ways and underscore the need for additional research.
Zotero Collections:

Among younger adults, the ability to willfully regulate negative affect, enabling effective responses to stressful experiences, engages regions of prefrontal cortex (PFC) and the amygdala. Because regions of PFC and the amygdala are known to influence the hypothalamic-pituitary-adrenal axis, here we test whether PFC and amygdala responses during emotion regulation predict the diurnal pattern of salivary cortisol secretion. We also test whether PFC and amygdala regions are engaged during emotion regulation in older (62- to 64-year-old) rather than younger individuals. We measured brain activity using functional magnetic resonance imaging as participants regulated (increased or decreased) their affective responses or attended to negative picture stimuli. We also collected saliva samples for 1 week at home for cortisol assay. Consistent with previous work in younger samples, increasing negative affect resulted in ventral lateral, dorsolateral, and dorsomedial regions of PFC and amygdala activation. In contrast to previous work, decreasing negative affect did not produce the predicted robust pattern of higher PFC and lower amygdala activation. Individuals demonstrating the predicted effect (decrease < attend in the amygdala), however, exhibited higher signal in ventromedial prefrontal cortex (VMPFC) for the same contrast. Furthermore, participants displaying higher VMPFC and lower amygdala signal when decreasing compared with the attention control condition evidenced steeper, more normative declines in cortisol over the course of the day. Individual differences yielded the predicted link between brain function while reducing negative affect in the laboratory and diurnal regulation of endocrine activity in the home environment.
Zotero Collections:

The amygdalae are important, if not critical, brain regions for many affective, attentional and memorial processes, and dysfunction of the amygdalae has been a consistent finding in the study of clinical depression. Theoretical models of the functional neuroanatomy of both normal and psychopathological affective processes which posit cortical hemispheric specialization of functions have been supported by both lesion and functional neuroimaging studies in humans. Results from human neuroimaging studies in support of amygdalar hemispheric specialization are inconsistent. However, recent results from human lesion studies are consistent with hemispheric specialization. An important, yet largely ignored, feature of the amygdalae in the primate brain--derived from both neuroanatomical and electrophysiological data--is that there are virtually no direct interhemispheric connections via the anterior commissure (AC). This feature stands in stark contrast to that of the rodent brain wherein virtually all amygdalar nuclei have direct interhemispheric connections. We propose this feature of the primate brain, in particular the human brain, is a result of influences from frontocortical hemispheric specialization which have developed over the course of primate brain evolution. Results consistent with this notion were obtained by examining the nature of human amygdalar interhemispheric connectivity using both functional magnetic resonance imaging (FMRI) and positron emission tomography (PET). We found modest evidence of amygdalar interhemispheric functional connectivity in the non-depressed brain, whereas there was strong evidence of functional connectivity in the depressed brain. We interpret and discuss the nature of this connectivity in the depressed brain in the context of dysfunctional frontocortical-amygdalar interactions which accompany clinical depression.
Zotero Collections:

OBJECTIVE: The anticipation of adverse outcomes, or worry, is a cardinal symptom of generalized anxiety disorder. Prior work with healthy subjects has shown that anticipating aversive events recruits a network of brain regions, including the amygdala and anterior cingulate cortex. This study tested whether patients with generalized anxiety disorder have alterations in anticipatory amygdala function and whether anticipatory activity in the anterior cingulate cortex predicts treatment response. METHOD: Functional magnetic resonance imaging (fMRI) was employed with 14 generalized anxiety disorder patients and 12 healthy comparison subjects matched for age, sex, and education. The event-related fMRI paradigm was composed of one warning cue that preceded aversive pictures and a second cue that preceded neutral pictures. Following the fMRI session, patients received 8 weeks of treatment with extended-release venlafaxine. RESULTS: Patients with generalized anxiety disorder showed greater anticipatory activity than healthy comparison subjects in the bilateral dorsal amygdala preceding both aversive and neutral pictures. Building on prior reports of pretreatment anterior cingulate cortex activity predicting treatment response, anticipatory activity in that area was associated with clinical outcome 8 weeks later following treatment with venlafaxine. Higher levels of pretreatment anterior cingulate cortex activity in anticipation of both aversive and neutral pictures were associated with greater reductions in anxiety and worry symptoms. CONCLUSIONS: These findings of heightened and indiscriminate amygdala responses to anticipatory signals in generalized anxiety disorder and of anterior cingulate cortex associations with treatment response provide neurobiological support for the role of anticipatory processes in the pathophysiology of generalized anxiety disorder.
Zotero Collections:

Ten-month-old infants viewed videotape segments of an actress spontaneously generating a happy or sad facial expression. Brain activity was recorded from the left and right frontal and parietal scalp regions. In two studies, infants showed greater activation of the left frontal than of the right frontal area in response to the happy segments. Parietal asymmetry failed to discriminate between the conditions. Differential lateralization of the hemispheres for affective processes seems to be established by 10 months of age.
Zotero Collections:

Research on the neural substrates of emotion has found evidence for cortical asymmetries for aspects of emotion. A recent article by Nicholls et al. has used a new imaging method to interrogate facial movement in 3D to assess possible asymmetrical action during expressions of happiness and sadness. Greater left-sided movement, particularly during expressions of sadness was observed. These findings have implications for understanding hemispheric differences in emotion and lend support to the notion that aspects of emotion processing might be differentially localized in the two hemispheres.
Zotero Collections:

Thirty-two participants were tested for both resting electroencephalography (EEG) and neuropsychological function. Eight one-minute trials of resting EEG were recorded from 14 channels referenced to linked ears, which was rederived to an average reference. Neuropsychological tasks included Verbal Fluency, the Tower of London, and Corsi's Recurring Blocks. Asymmetries in EEG alpha activity were correlated with performance on these tasks. Similar patterns were obtained for delta and theta bands. Factor analyses of resting EEG asymmetries over particular regions suggested that asymmetries over anterior scalp regions may be partly independent from those over posterior scalp regions. These results support the notions that resting EEG asymmetries are specified by multiple mechanisms along the rostral/caudal plane, and that these asymmetries predict task performance in a manner consistent with lesion and neuroimaging studies.
Zotero Collections:

BACKGROUND: The frontal lobe has been crucially involved in the neurobiology of major depression, but inconsistencies among studies exist, in part due to a failure of considering modulatory variables such as symptom severity, comorbidity with anxiety, and distinct subtypes, as codeterminants for patterns of brain activation in depression. METHODS: Resting electroencephalogram was recorded in 38 unmedicated subjects with major depressive disorder and 18 normal comparison subjects, and analyzed with a tomographic source localization method that computes the cortical three-dimensional distribution of current density for standard electroencephalogram frequency bands. Symptom severity and anxiety were measured via self-report and melancholic features via clinical interview. RESULTS: Depressed subjects showed more excitatory (beta3, 21.5-30.0 Hz) activity in the right superior and inferior frontal lobe (Brodmann's area 9/10/11) than comparison subjects. In melancholic subjects, this effect was particularly pronounced for severe depression, and right frontal activity correlated positively with anxiety. Depressed subjects showed posterior cingulate and precuneus hypoactivity. CONCLUSIONS: While confirming prior results implicating right frontal and posterior cingulate regions, this study highlights the importance of depression severity, anxiety, and melancholic features in patterns of brain activity accompanying depression.
Zotero Collections:

Fragile X syndrome (FXS) is the most commonly known genetic disorder associated with autism spectrum disorder (ASD). Overlapping features in these populations include gaze aversion, communication deficits, and social withdrawal. Although the association between FXS and ASD has been well documented at the behavioral level, the underlying neural mechanisms associated with the social/emotional deficits in these groups remain unclear. We collected functional brain images and eye-gaze fixations from 9 individuals with FXS and 14 individuals with idiopathic ASD, as well as 15 typically developing (TD) individuals, while they performed a facial-emotion discrimination task. The FXS group showed a similar yet less aberrant pattern of gaze fixations compared with the ASD group. The FXS group also showed fusiform gyrus (FG) hypoactivation compared with the TD control group. Activation in FG was strongly and positively associated with average eye fixation and negatively associated with ASD characteristics in the FXS group. The FXS group displayed significantly greater activation than both the TD control and ASD groups in the left hippocampus (HIPP), left superior temporal gyrus (STG), right insula (INS), and left postcentral gyrus (PCG). These group differences in brain activation are important as they suggest unique underlying face-processing neural circuitry in FXS versus idiopathic ASD, largely supporting the hypothesis that ASD characteristics in FXS and idiopathic ASD reflect partially divergent impairments at the neural level, at least in FXS individuals without a co-morbid diagnosis of ASD.
Zotero Collections:

The experience of aversion is shaped by multiple physiological and psychological factors including one's expectations. Recent work has shown that expectancy manipulation can alter perceptions of aversive events and concomitant brain activation. Accruing evidence indicates a primary role of altered expectancies in the placebo effect. Here, we probed the mechanism by which expectation attenuates sensory taste transmission by examining how brain areas activated by misleading information during an expectancy period modulate insula and amygdala activation to a highly aversive bitter taste. In a rapid event-related fMRI design, we showed that activations in the rostral anterior cingulate cortex (rACC), orbitofrontal cortex (OFC), and dorsolateral prefrontal cortex to a misleading cue that the taste would be mildly aversive predicted decreases in insula and amygdala activation to the highly aversive taste. OFC and rACC activation to the misleading cue were also associated with less aversive ratings of that taste. Additional analyses revealed consistent results demonstrating functional connectivity among the OFC, rACC, and insula. Altering expectancies of upcoming aversive events are shown here to depend on robust functional associations among brain regions implicated in prior work on the placebo effect.
Zotero Collections:

Biological systems are particularly prone to variation, and the authors argue that such variation must be regarded as important data in its own right. The authors describe a method in which individual differences are studied within the framework of a general theory of the population as a whole and illustrate how this method can be used to address three types of issues: the nature of the mechanisms that give rise to a specific ability, such as mental imagery; the role of psychological or biological mediators of environmental challenges, such as the biological bases for differences in dispositional mood; and the existence of processes that have nonadditive effects with behavioral and physiological variables, such as factors that modulate the response to stress and its effects on the immune response.
Zotero Collections:

Despite the call for multilevel observation of negative affect, including multiple physiological systems, too little empirical research has been conducted in infants and young children, and physiology-affect associations are not consistently reported. We examined changes in heart rate, respiratory sinus arrhythmia, and preejection period in 24-month-olds across four increasingly challenging, emotion-eliciting tasks. We predicted that changes in cardiac reactivity would be systematically related to changes in negative affect. Results largely support the predictions with one important exception. With increasing distress across the tasks, HR increased and RSA decreased. However, no significant changes in PEP were observed. HR was associated with negative affect during all tasks, and changes in HR were related to changes in negative affect. PEP and negative affect were associated, but only marginally so. Within-subject analyses confirmed the predicted associations. Finally, the associations between physiology and negative affect were different for boys and girls. We discuss these results in the context of implications for future research on cardiac-affect associations in young children.
Zotero Collections:

The authors examined the time course of affective responding associated with different affective dimensions--anxious apprehension, anxious arousal, and anhedonic depression--using an emotion-modulated startle paradigm. Participants high on 1 of these 3 dimensions and nonsymptomatic control participants viewed a series of affective pictures with acoustic startle probes presented before, during, and after the stimuli. All groups exhibited startle potentiation during unpleasant pictures and in anticipation of both pleasant and unpleasant pictures. Compared with control participants, symptomatic participants exhibited sustained potentiation following the offset of unpleasant stimuli and a lack of blink attenuation during and following pleasant stimuli. Common and unique patterns of affective responses in the 3 types of mood symptoms are discussed.
Zotero Collections:

The heart rate, breathing rate, and skin resistance were recorded for 20 community home girls (Home group) and for 20 age-matched girls from a regular school (School group). The former group had a significantly higher rate of breathing and a more irregular breath pattern known to correlate with high fear and anxiety, than the School group. Skin resistance was significantly lower in the School group, which may suggest greater arousal, 28 girls of the Home group formed 14 pairs, matched for age and duration of stay in the home. Subjects of a pair were randomly assigned to either yoga or games groups. For the former emphasis was on relaxation and awareness, whereas for the latter increasing physical activity was emphasized. At the end of an hour daily for six months both groups showed a significant decrease in the resting heart rate relative to initial values (Wilcoxon paired-sample rest), and the yoga group showed a significant decrease in breath rate, which appeared more regular but no significant increase in the skin resistance. These results suggest that a yoga program which includes relaxation, awareness, and graded physical activity is a useful addition to the routine of community home children.
Zotero Collections:

Positive emotions promote adjustment to aversive life events. However, evolutionary theory and empirical research on trauma disclosure suggest that in the context of stigmatized events, expressing positive emotions might incur social costs. To test this thesis, the authors coded genuine (Duchenne) smiling and laughter and also non-Duchenne smiling from videotapes of late-adolescent and young adult women, approximately half with documented histories of childhood sexual abuse (CSA), as they described the most distressing event of their lives. Consistent with previous studies, genuine positive emotional expression was generally associated with better social adjustment two years later. However, as anticipated, CSA survivors who expressed positive emotion in the context of describing a past CSA experience had poorer long-term social adjustment, whereas CSA survivors who expressed positive emotion while describing a nonabuse experience had improved social adjustment. These findings suggest that the benefits of positive emotional expression may often be context specific.
Zotero Collections:

This article presents an overview of ways to think about the brain and emotion and consider the role of evolution and expression in shaping the neural circuitry of affective processing. Issues pertaining to whether there are separate unique neural modules hard-wired for emotion processing or whether affective processing uses more generalized circuitry are considered. Relations between affect and cognition--specifically, memory--are examined from the perspective of overlapping neural systems. The role of individual differences in neural function in affective style are discussed, and the concepts of affective chronometry, or the time course of emotional responding and emotion regulation, are introduced. Finally, the extent to which certain emotional traits can be viewed as trainable skills is considered, and the relevance of work on neural plasticity to the skill framework is addressed. Data from a variety of sources using different types of measures is brought to bear on these questions, including neuroimaging and psychophysiological measures, studies of individuals of different ages ranging from early childhood to old age, studies of nonhuman primates, and observations of patients with localized brain damage. Emotions are viewed as varying in both type and dimension. Honoring brain circuitry in parsing the domain of affects will result in distinctions and differentiations that are not currently incorporated in traditional classification schemes.
Zotero Collections:

Pages

  • Page
  • of 4