Skip to main content Skip to search
Evaluation of the potential nephrotoxicity and mechanism in rats after long-term exposure to the traditional Tibetan medicine tsothel.
Pharmaceutical Biology
Format: Journal Article
Publication Year: 2018
Pages: 678 - 690
Source ID: shanti-sources-93431
Abstract: Context: Tsothel, a traditional Tibetan medicine, is regarded as 'the king of essences'. Nevertheless, tsothel has aroused serious concern regarding its biosafety because its main component is HgS. Unfortunately, toxicological studies on tsothel are scarce. Objective: As inorganic mercury has high affinity for the kidney, the present investigation was designed to determine the potential nephrotoxicity and mechanism of tsothel. Materials and methods: Sprague-Dawley rats were orally administered different doses of tsothel (0, 66.70, 33.35 and 16.68 mg/kg) daily for 180 days, followed by the withdrawal of tsothel for 120 days. Then, the related nephrotoxicity was examined by the ICP-MS, ELISA, colorimetric, RT-PCR, HE staining, immunohistochemical staining and flow cytometry methods. Results: Although tsothel administration led to a large accumulation of Hg (794.25 ± 464.30 ng/g in the 66.70 mg/kg group, 775.75 ± 307.89 ng/g in the 33.35 mg/kg group and 532.60 ± 356.77 ng/g in the 16.68 mg/kg group) in the kidney after 120 days of tsothel withdrawal, the blood CREA and BUN, urinary Kim-1, NAG, RBP and β2-MG, renal SOD, MDA, pathology, proliferation, apoptosis and cell cycle had no significant changes compared with the control group. Additionally, the high GSH content (318.87 ± 44.19 nmol/mL in the 33.35 mg/kg group) and the relative expression levels of Kim-1 (1.08 ± 0.11 in the 33.35 mg/kg group), MT-1 (1.46 ± 0.10 in the 66.70 mg/kg group, 1.61 ± 0.19 in the 33.35 mg/kg group and 1.57 ± 0.14 in the 16.68 mg/kg group) and GST-Pi (1.76 ± 0.89 in the 33.35 mg/kg group) mRNA recovered to normal after tsothel withdrawal. Interestingly, the change trend of GST-Pi gene expression was consistent with the change trend of GSH activity. Conclusions: Overall, our study shows that tsothel administration did not induce overt nephrotoxicity but did have reversible stress-related effects. These results suggest that tsothel affects stress response mechanisms with the involvement of detoxifying enzyme systems. The formulation method and chemotype could play a role in the reduced toxicity potential of tsothel compared to common mercurials. [ABSTRACT FROM AUTHOR]