Skip to main content Skip to search
Displaying 21721 - 21780 of 21903

Pages

  • Page
  • of 366

Poor sleep is common in substance use disorders (SUDs) and is a risk factor for relapse. Within the context of a multicomponent, mindfulness-based sleep intervention that included mindfulness meditation (MM) for adolescent outpatients with SUDs (n = 55), this analysis assessed the contributions of MM practice intensity to gains in sleep quality and self-efficacy related to SUDs. Eighteen adolescents completed a 6-session study intervention and questionnaires on psychological distress, sleep quality, mindfulness practice, and substance use at baseline, 8, 20, and 60 weeks postentry. Program participation was associated with improvements in sleep and emotional distress, and reduced substance use. MM practice frequency correlated with increased sleep duration and improvement in self-efficacy about substance use. Increased sleep duration was associated with improvements in psychological distress, relapse resistance, and substance use-related problems. These findings suggest that sleep is an important therapeutic target in substance abusing adolescents and that MM may be a useful component to promote improved sleep.

OBJECTIVES: To examine whether mindfulness meditation (MM) was associated with changes in objectively measured polysomnographic (PSG) sleep profiles and to relate changes in PSG sleep to subjectively reported changes in sleep and depression within the context of a randomized controlled trial. Previous studies have indicated that mindfulness and other forms of meditation training are associated with improvements in sleep quality. However, none of these studies used objective PSG sleep recordings within longitudinal randomized controlled trials of naïve subjects.
METHODS: Twenty-six individuals with partially remitted depression were randomized into an 8-week Mindfulness-Based Cognitive Therapy (MBCT) course or a waitlist control condition. Pre-post measurements included PSG sleep studies and subjectively reported sleep and depression symptoms.
RESULTS: According to PSG sleep, MM practice was associated with several indices of increased cortical arousal, including more awakenings and stage 1 sleep and less slow-wave sleep relative to controls, in proportion to amount of MM practice. According to sleep diaries, subjectively reported sleep improved post MBCT but not above and beyond controls. Beck Depression Inventory scores decreased more in the MBCT group than controls. Improvements in depression were associated with increased subjective sleep continuity and increased PSG arousal.
CONCLUSIONS: MM is associated with increases in objectively measured arousal during sleep with simultaneous improvements in subjectively reported sleep quality and mood disturbance. This pattern is similar to the profiles of positive responders to common antidepressant medications.

The high likelihood of recurrence in depression is linked to a progressive increase in emotional reactivity to stress (stress sensitization). Mindfulness-based therapies teach mindfulness skills designed to decrease emotional reactivity in the face of negative affect-producing stressors. The primary aim of the current study was to assess whether Mindfulness-Based Cognitive Therapy (MBCT) is efficacious in reducing emotional reactivity to social evaluative threat in a clinical sample with recurrent depression. A secondary aim was to assess whether improvement in emotional reactivity mediates improvements in depressive symptoms. Fifty-two individuals with partially remitted depression were randomized into an 8-week MBCT course or a waitlist control condition. All participants underwent the Trier Social Stress Test (TSST) before and after the 8-week trial period. Emotional reactivity to stress was assessed with the Spielberger State Anxiety Inventory at several time points before, during, and after the stressor. MBCT was associated with decreased emotional reactivity to social stress, specifically during the recovery (post-stressor) phase of the TSST. Waitlist controls showed an increase in anticipatory (pre-stressor) anxiety that was absent in the MBCT group. Improvements in emotional reactivity partially mediated improvements in depressive symptoms. Limitations include small sample size, lack of objective or treatment adherence measures, and non-generalizability to more severely depressed populations. Given that emotional reactivity to stress is an important psychopathological process underlying the chronic and recurrent nature of depression, these findings suggest that mindfulness skills are important in adaptive emotion regulation when coping with stress.

This pilot study tested the efficacy of a brief intervention using motivational interviewing (MI) plus mindfulness meditation (MM) to reduce marijuana use among young adult females. Thirty-four female marijuana users between the ages of 18 and 29 were randomized to either the intervention group (n = 22), consisting of two sessions of MI-MM, or an assessment-only control group (n = 12). The participants' marijuana use was assessed at baseline and at 1, 2, and 3 months posttreatment. Fixed-effects regression modeling was used to analyze treatment effects. Participants randomized to the intervention group were found to use marijuana on 6.15 (z = -2.42, p = .015), 7.81 (z = -2.78, p = .005), and 6.83 (z = -2.23, p = .026) fewer days at Months 1, 2, and 3, respectively, than controls. Findings from this pilot study provide preliminary evidence for the feasibility and effectiveness of a brief MI-MM for young adult female marijuana users.

INTRODUCTION: Major depressive disorder (MDD) is characterized by cognitive biases in attention, memory and language use. Language use biases often parallel depression symptoms, and contain over-representations of both negative emotive and death words as well as low levels of positive emotive words. This study further explores cognitive biases in depression by comparing the effect of current depression status to cumulative depression history on an elaborated verbal recall of emotional photographs.
METHODS: Following a negative mood induction, fifty-two individuals (42 women) with partially-remitted depression viewed - then recalled and verbally described - slides from the International Affective Picture System (IAPS). Descriptions were transcribed and frequency of depression-related word use (positive emotion, negative emotion, sex, ingestion and death) was analyzed using the Linguistic Inquiry and Word Count program (LIWC).
RESULTS: Contrary to expectations and previous findings, current depression status did not affect word use in any categories of interest. However, individuals with more than 5 years of previous depression used fewer words related to positive emotion (t(50) = 2.10, p = .04, (d = 0.57)), and sex (t(48) = 2.50, p = .013 (d = 0.81)), and there was also a trend for these individuals to use fewer ingestion words (t(50) = 1.95, p = .057 (d = 0.58)), suggesting a deficit in appetitive processing.
CONCLUSIONS: Our findings suggest that depression duration affects appetitive information processing and that appetitive word use may be a behavioral marker for duration related brain changes which may be used to inform treatment.

Buddhist meditation practices have become a topic of widespread interest in both science and medicine. Traditional Buddhist formulations describe meditation as a state of relaxed alertness that must guard against both excessive hyperarousal (restlessness) and excessive hypoarousal (drowsiness, sleep). Modern applications of meditation have emphasized the hypoarousing and relaxing effects without as much emphasis on the arousing or alertness-promoting effects. In an attempt to counterbalance the plethora of data demonstrating the relaxing and hypoarousing effects of Buddhist meditation, this interdisciplinary review aims to provide evidence of meditation's arousing or wake-promoting effects by drawing both from Buddhist textual sources and from scientific studies, including subjective, behavioral, and neuroimaging studies during wakefulness, meditation, and sleep. Factors that may influence whether meditation increases or decreases arousal are discussed, with particular emphasis on dose, expertise, and contemplative trajectory. The course of meditative progress suggests a nonlinear multiphasic trajectory, such that early phases that are more effortful may produce more fatigue and sleep propensity, while later stages produce greater wakefulness as a result of neuroplastic changes and more efficient processing.

The current study is a pilot trial to examine the effects of a nonelective, classroom-based, teacher-implemented, mindfulness meditation intervention on standard clinical measures of mental health and affect in middle school children. A total of 101 healthy sixth-grade students (55 boys, 46 girls) were randomized to either an Asian history course with daily mindfulness meditation practice (intervention group) or an African history course with a matched experiential activity (active control group). Self-reported measures included the Youth Self Report (YSR), a modified Spielberger State-Trait Anxiety Inventory, and the Cognitive and Affective Mindfulness Measure -Revised. Both groups decreased significantly on clinical syndrome subscales and affect but did not differ in the extent of their improvements. Meditators were significantly less likely to develop suicidal ideation or thoughts of self-harm than controls. These results suggest that mindfulness training may yield both unique and non-specific benefits that are shared by other novel activities.

This chapter describes the potential far-reaching consequences of contemplative higher education for the fields of science and medicine.

Poor sleep is common in substance use disorders (SUDs) and is a risk factor for relapse. Within the context of a multicomponent, mindfulness-based sleep intervention that included mindfulness meditation (MM) for adolescent outpatients with SUDs (n = 55), this analysis assessed the contributions of MM practice intensity to gains in sleep quality and self-efficacy related to SUDs. Eighteen adolescents completed a 6-session study intervention and questionnaires on psychological distress, sleep quality, mindfulness practice, and substance use at baseline, 8, 20, and 60 weeks postentry. Program participation was associated with improvements in sleep and emotional distress, and reduced substance use. MM practice frequency correlated with increased sleep duration and improvement in self-efficacy about substance use. Increased sleep duration was associated with improvements in psychological distress, relapse resistance, and substance use-related problems. These findings suggest that sleep is an important therapeutic target in substance abusing adolescents and that MM may be a useful component to promote improved sleep.

Lesions of the dorsal hippocampus have been shown to disrupt both the acquisition and the consolidation of memories associated with contextual fear (fear of the place of conditioning), but do not affect fear conditioning to discrete cues (e.g., a tone). Blockade of central muscarinic cholinergic receptor activation results in selective acquisition deficits of contextual fear conditioning, but reportedly has little effect on consolidation. Here we show for the first time that direct infusion of the muscarinic cholinergic receptor antagonist, scopolamine, into the dorsal hippocampus produces a dose-dependent deficit in both acquisition and consolidation of contextual fear conditioning, while having no impact on simple tone conditioning.

Rats were implanted bilaterally with cannulae into the dorsal hippocampus and trained in a Pavlovian fear-conditioning paradigm. Four groups of rats were infused intra-cranially with 1-(5'-isoquinolinesulfonyl)-2-methylpiperazine (H7-dihydrochloride), a potent inhibitor of both protein kinase C (PKC) and cAMP-dependent protein kinase (PKA), at different time intervals in order to examine their involvement in the acquisition and consolidation of contextual fear memory. We demonstrate a significant consolidation deficit of long-term contextual fear-conditioning memory that is maximal when PKA and PKC are inhibited at 90 min post-training. These results suggest the existence of a critical time window, during which these enzymes must be activated for the consolidation of long-term memories.

The cholinergic system has consistently been implicated in Pavlovian fear conditioning. Considerable work has been done to localize specific nicotinic receptor subtypes in the hippocampus and determine their functional importance; however, the specific function of many of these subtypes has yet to be determined. An alpha7 nicotinic antagonist methyllycaconitine (MLA) (35 microg), and a broad spectrum non-alpha7 nicotinic antagonist mecamylamine (35 microg) was injected directly into the dorsal hippocampus or overlying cortex either 15 min pre-, 1 min post-, or 6h post-fear conditioning. One week after conditioning, retention of contextual and cue (tone) conditioning were assessed. A significant impairment in retention of contextual fear was observed when mecamylamine was injected 15 min pre- and 1 min post-conditioning. No significant impairment was observed when mecamylamine was injected 6h post-conditioning. Likewise, a significant impairment in retention of contextual fear was observed when MLA was injected 1 min post-conditioning; however, in contrast, MLA did not show any significant impairments when injected 15 min pre-conditioning, but did show a significant impairment when injected 6h post-conditioning. There were no significant impairments observed when either drug was injected into overlying cortex. No significant impairments were observed in cue conditioning for either drug. In general, specific temporal dynamics involved in nicotinic receptor function were found relative to time of receptor dysfunction. The results indicate that the greatest deficits in long-term retention (1 week) of contextual fear are produced by central infusion of MLA minutes to hours post-conditioning or mecamylamine within minutes of conditioning.

Subregional analyses of the hippocampus suggest CA1-dependent memory processes rely heavily upon interactions between the CA1 subregion and entorhinal cortex. There is evidence that the direct perforant path (pp) projection to CA1 is selectively modulated by dopamine while having little to no effect on the Schaffer collateral (SC) projection to CA1. The current study takes advantage of this pharmacological dissociation to demonstrate that local infusion of the non-selective dopamine agonist, apomorphine (10, 15 µg), into the CA1 subregion of awake animals produces impairments in working memory at intermediate (5 min), but not short-term (10 sec) delays within a delayed nonmatch-to-place task on a radial arm maze. Sustained impairments were also found in a novel context with similar object-space relationships. Infusion of apomorphine into CA1 is also shown here to produce deficits in spatial, but not non-spatial novelty detection within an object exploration paradigm. In contrast, apomorphine produces no behavioral deficits when infused into the CA3 subregion or overlying cortex. These behavioral studies are supported by previous electrophysiological data that demonstrate local infusion of the same doses of apomorphine significantly modifies evoked responses in the distal dendrites of CA1 following angular bundle stimulation, but produces no significant effects in the proximal dendritic layer following stimulation of the SC. These results support a modulatory role for dopamine in EC-CA1, but not CA3-CA1 circuitry, and suggest the possibility of a fundamental role for EC-CA1 synaptic transmission in terms of detection of spatial novelty, and intermediate-term, but not short-term spatial working memory or object-novelty detection.

Neurosurgical treatment of psychiatric disorders has been influenced by evolving neurobiological models of symptom generation. The advent of functional neuroimaging and advances in the neurosciences have revolutionized understanding of the functional neuroanatomy of psychiatric disorders. This article reviews neuroimaging studies of depression from the last 3 decades and describes an emerging neurocircuitry model of mood disorders, focusing on critical circuits of cognition and emotion, particularly those networks involved in the regulation of evaluative, expressive and experiential aspects of emotion. The relevance of this model for neurotherapeutics is discussed, as well as the role of functional neuroimaging of psychiatric disorders.

Regional modulation of the level of cortical neurotransmitters in the brain would serve as a new functional brain mapping technique to interrogate the neurochemical actions of the brain. We investigated the utility of the application of low-intensity, pulsed sonication of focused ultrasound (FUS) to the brain to modulate the extracellular level of dopamine (DA) and serotonin (5-HT). FUS was delivered to the thalamic areas of rats, and extracellular DA and 5-HT were sampled from the frontal lobe using the microdialysis technique. The concentration changes of the sampled DA and 5-HT were measured through high-performance liquid chromatography. We observed a significant increase of the extracellular concentrations of DA and 5-HT in the FUS-treated group as compared with those in the unsonicated group. Our results provide the first direct evidence that FUS sonication alters the level of extracellular concentration of these monoamine neurotransmitters and has a potential modulatory effect on their local release, uptake, or degradation. Our findings suggest that the pulsed application of FUS offers new perspectives for a possible noninvasive modulation of neurotransmitters and may have diagnostic as well as therapeutic implications for DA/5-HT-mediated neurological and psychiatric disorders. © 2011 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 21, 232–240, 2011

Cultivation of mindfulness, the nonjudgmental awareness of experiences in the present moment, produces beneficial effects on well-being and ameliorates psychiatric and stress-related symptoms. Mindfulness meditation has therefore increasingly been incorporated into psychotherapeutic interventions. Although the number of publications in the field has sharply increased over the last two decades, there is a paucity of theoretical reviews that integrate the existing literature into a comprehensive theoretical framework. In this article, we explore several components through which mindfulness meditation exerts its effects: (a) attention regulation, (b) body awareness, (c) emotion regulation (including reappraisal and exposure, extinction, and reconsolidation), and (d) change in perspective on the self. Recent empirical research, including practitioners’ self-reports and experimental data, provides evidence supporting these mechanisms. Functional and structural neuroimaging studies have begun to explore the neuroscientific processes underlying these components. Evidence suggests that mindfulness practice is associated with neuroplastic changes in the anterior cingulate cortex, insula, temporo-parietal junction, fronto-limbic network, and default mode network structures. The authors suggest that the mechanisms described here work synergistically, establishing a process of enhanced self-regulation. Differentiating between these components seems useful to guide future basic research and to specifically target areas of development in the treatment of psychological disorders.

This article draws on research in neuroscience, cognitive science, developmental psychology, and education, as well as scholarship from contemplative traditions concerning the cultivation of positive development, to highlight a set of mental skills and socioemotional dispositions that are central to the aims of education in the 21st century. These include self-regulatory skills associated with emotion and attention, self-representations, and prosocial dispositions such as empathy and compassion. It should be possible to strengthen these positive qualities and dispositions through systematic contemplative practices, which induce plastic changes in brain function and structure, supporting prosocial behavior and academic success in young people. These putative beneficial consequences call for focused programmatic research to better characterize which forms and frequencies of practice are most effective for which types of children and adolescents. Results from such research may help refine training programs to maximize their effectiveness at different ages and to document the changes in neural function and structure that might be induced.

First described for use in mapping the human visual cortex in 1991, functional magnetic resonance imaging (fMRI) is based on blood-oxygen level dependent (BOLD) changes in cortical regions that occur during specific tasks. Typically, an overabundance of oxygenated (arterial) blood is supplied during activation of brain areas. Consequently, the venous outflow from the activated areas contains a higher concentration of oxyhemoglobin, which changes the paramagnetic properties of the tissue that can be detected during a T2-star acquisition. fMRI data can be acquired in response to specific tasks or in the resting state. fMRI has been widely applied to studying physiologic and pathophysiologic diseases of the brain. This review will discuss the most common current clinical applications of fMRI as well as emerging directions.

To better understand the neurobiological mechanisms by which mindfulness-based practices function in a psychotherapeutic context, this article details the definition, techniques, and purposes ascribed to mindfulness training as described by its Buddhist tradition of origin and by contemporary neurocognitive models. Included is theory of how maladaptive mental processes become habitual and automatic, both from the Buddhist and Western psychological perspective. Specific noting and labeling techniques in open monitoring meditation, described in the Theravada and Western contemporary traditions, are highlighted as providing unique access to multiple modalities of awareness. Potential explicit and implicit mechanisms are discussed by which such techniques can contribute to transforming maladaptive habits of mind and perceptual and cognitive biases, improving efficiency, facilitating integration, and providing the flexibility to switch between systems of self-processing. Finally, a model is provided to describe the timing by which noting and labeling practices have the potential to influence different stages of low- and high-level neural processing. Hypotheses are proposed concerning both levels of processing in relation to the extent of practice. Implications for the nature of subjective experience and self-processing as it relates to one's habits of mind, behavior, and relation to the external world, are also described.

In light of a growing interest in contemplative practices such as meditation, the emerging field of contemplative science has been challenged to describe and objectively measure how these practices affect health and well-being. While “mindfulness” itself has been proposed as a measurable outcome of contemplative practices, this concept encompasses multiple components, some of which, as we review here, may be better characterized as equanimity. Equanimity can be defined as an even-minded mental state or dispositional tendency toward all experiences or objects, regardless of their origin or their affective valence (pleasant, unpleasant, or neutral). In this article, we propose that equanimity be used as an outcome measure in contemplative research. We first define and discuss the inter-relationship between mindfulness and equanimity from the perspectives of both classical Buddhism and modern psychology and present existing meditation techniques for cultivating equanimity. We then review psychological, physiological, and neuroimaging methods that have been used to assess equanimity either directly or indirectly. In conclusion, we propose that equanimity captures potentially the most important psychological element in the improvement of well-being, and therefore should be a focus in future research studies.

Compassion - Bridging Practice and Science

Our ability to have an experience of another's pain is characteristic of empathy. Using functional imaging, we assessed brain activity while volunteers experienced a painful stimulus and compared it to that elicited when they observed a signal indicating that their loved one—present in the same room—was receiving a similar pain stimulus. Bilateral anterior insula (AI), rostral anterior cingulate cortex (ACC), brainstem, and cerebellum were activated when subjects received pain and also by a signal that a loved one experienced pain. AIand ACC activation correlated with individual empathy scores. Activity in the posterior insula/secondary somatosensory cortex, the sensorimotor cortex (SI/MI), and the caudal ACC was specific to receiving pain. Thus, a neural response in AIand rostral ACC, activated in common for “self” and “other” conditions, suggests that the neural substrate for empathic experience does not involve the entire “pain matrix.” We conclude that only that part of the pain network associated with its affective qualities, but not its sensory qualities, mediates empathy.

We examined whether neural responses associated with judgments of socially relevant aspects of the human face extend to stimuli that acquire their significance through learning in a meaningful interactive context, specifically reciprocal cooperation. During fMRI, subjects made gender judgments on faces of people who had been introduced as fair (cooperators) or unfair (defector) players through repeated play of a sequential Prisoner's Dilemma game. To manipulate moral responsibility, players were introduced as either intentional or nonintentional agents. Our behavioral (likebility ratings and memory performance) as well as our imaging data confirm the saliency of social fairness for human interactions. Relative to neutral faces, faces of intentional cooperators engendered increased activity in left amygdala, bilateral insula, fusiform gyrus, STS, and reward-related areas. Our data indicate that rapid learning regarding the moral status of others is expressed in altered neural activity within a system associated with social cognition.

Recent imaging results suggest that individuals automatically share the emotions of others when exposed to their emotions. We question the assumption of the automaticity and propose a contextual approach, suggesting several modulatory factors that might influence empathic brain responses. Contextual appraisal could occur early in emotional cue evaluation, which then might or might not lead to an empathic brain response, or not until after an empathic brain response is automatically elicited. We propose two major roles for empathy; its epistemological role is to provide information about the future actions of other people, and important environmental properties. Its social role is to serve as the origin of the motivation for cooperative and prosocial behavior, as well as help for effective social communication.

The neural processes underlying empathy are a subject of intense interest within the social neurosciences. However, very little is known about how brain empathic responses are modulated by the affective link between individuals. We show here that empathic responses are modulated by learned preferences, a result consistent with economic models of social preferences. We engaged male and female volunteers in an economic game, in which two confederates played fairly or unfairly, and then measured brain activity with functional magnetic resonance imaging while these same volunteers observed the confederates receiving pain. Both sexes exhibited empathy-related activation in pain-related brain areas (fronto-insular and anterior cingulate cortices) towards fair players. However, these empathy-related responses were significantly reduced in males when observing an unfair person receiving pain. This effect was accompanied by increased activation in reward-related areas, correlated with an expressed desire for revenge. We conclude that in men (at least) empathic responses are shaped by valuation of other people's social behaviour, such that they empathize with fair opponents while favouring the physical punishment of unfair opponents, a finding that echoes recent evidence for altruistic punishment.

In this study, we tested the validity of 2 popular assumptions about empathy: (a) empathy can be enhanced by oxytocin, a neuropeptide known to be crucial in affiliative behavior, and (b) individual differences in prosocial behavior are positively associated with empathic brain responses. To do so, we measured brain activity in a double-blind placebo-controlled study of 20 male participants either receiving painful stimulation to their own hand (self condition) or observing their female partner receiving painful stimulation to her hand (other condition). Prosocial behavior was measured using a monetary economic interaction game with which participants classified as prosocial (N = 12) or selfish (N = 6), depending on whether they cooperated with another player. Empathy-relevant brain activation (anterior insula) was neither enhanced by oxytocin nor positively associated with prosocial behavior. However, oxytocin reduced amygdala activation when participants received painful stimulation themselves (in the nonsocial condition). Surprisingly, this effect was driven by "selfish" participants. The results suggest that selfish individuals may not be as rational and unemotional as usually suggested, their actions being determined by their feeling anxious rather than by reason.

Successful decision making in a social setting depends on our ability to understand the intentions, emotions and beliefs of others. The mirror system allows us to understand other people's motor actions and action intentions. ‘Empathy’ allows us to understand and share emotions and sensations with others. ‘Theory of mind’ allows us to understand more abstract concepts such as beliefs or wishes in others. In all these cases, evidence has accumulated that we use the specific neural networks engaged in processing mental states in ourselves to understand the same mental states in others. However, the magnitude of the brain activity in these shared networks is modulated by contextual appraisal of the situation or the other person. An important feature of decision making in a social setting concerns the interaction of reason and emotion. We consider four domains where such interactions occur: our sense of fairness, altruistic punishment, trust and framing effects. In these cases, social motivations and emotions compete with each other, while higher-level control processes modulate the interactions of these low-level biases.

Social relations between humans critically depend on our affective experiences of others. Oxytocin enhances prosocial behavior, but its effect on humans' affective experience of others is not known. We tested whether oxytocin influences affective ratings, and underlying brain activity, of faces that have been aversively conditioned. Using a standard conditioning procedure, we induced differential negative affective ratings in faces exposed to an aversive conditioning compared with nonconditioning manipulation. This differential negative evaluative effect was abolished by treatment with oxytocin, an effect associated with an attenuation of activity in anterior medial temporal and anterior cingulate cortices. In amygdala and fusiform gyrus, this modulation was stronger for faces with direct gaze, relative to averted gaze, consistent with a relative specificity for socially relevant cues. The data suggest that oxytocin modulates the expression of evaluative conditioning for socially relevant faces via influences on amygdala and fusiform gyrus, an effect that may explain its prosocial effects.

To monitor the environment for social threat humans must build affective evaluations of others. These evaluations are malleable and to a high degree shaped by responses engendered by specific social encounters. The precise neuronal mechanism by which these evaluations are constructed is poorly understood. We tested a hypothesis that conjoint activity in amygdala and fusiform gyrus would correlate with acquisition of social stimulus value. We tested this using a reinforcement learning algorithm, Q-learning, that assigned values to faces as a function of a history of pairing, or not pairing, with aversive shocks. Behaviourally, we observed a correlation between conditioning induced changes in skin conductance response (SCR) and subjective ratings for likeability of faces. Activity in both amygdala and fusiform gyrus (FG) correlated with the output of the reinforcement learning algorithm parameterized by these ratings. In amygdala, this effect was greater for averted than direct gaze faces. Furthermore, learning-related activity change in these regions correlated with SCR and subjective ratings. We conclude that amygdala and fusiform encode affective value in a manner that closely approximates a standard computational solution to learning.

The ability to share the other's feelings, known as empathy, has recently become the focus of social neuroscience studies. We review converging evidence that empathy with, for example, the pain of another person, activates part of the neural pain network of the empathizer, without first hand pain stimulation to the empathizer's body. The amplitude of empathic brain responses is modulated by the intensity of the displayed emotion, the appraisal of the situation, characteristics of the suffering person such as perceived fairness, and features of the empathizer such as gender or previous experience with pain-inflicting situations. Future studies in the field should address inter-individual differences in empathy, development and plasticity of the empathic brain over the life span, and the link between empathy, compassionate motivation, and prosocial behavior.

Although accumulating evidence highlights a crucial role of the insular cortex in feelings, empathy and processing uncertainty in the context of decision making, neuroscientific models of affective learning and decision making have mostly focused on structures such as the amygdala and the striatum. Here, we propose a unifying model in which insula cortex supports different levels of representation of current and predictive states allowing for error-based learning of both feeling states and uncertainty. This information is then integrated in a general subjective feeling state which is modulated by individual preferences such as risk aversion and contextual appraisal. Such mechanisms could facilitate affective learning and regulation of body homeostasis, and could also guide decision making in complex and uncertain environments.

The present paper briefly describes and contrasts two different motivations crucially involved in decision making and cooperation, namely fairness-based and compassion-based motivation. Whereas both can lead to cooperation in comparable social situations, we suggest that they are driven by fundamentally different mechanisms and, overall, predict different behavioral outcomes. First, we provide a brief definition of each and discuss the relevant behavioral and neuroscientific literature with regards to cooperation in the context of economic games. We suggest that, whereas both fairness- and compassion-based motivation can support cooperation, fairness-based motivation leads to punishment in cases of norm violation, while compassion-based motivation can, in cases of defection, counteract a desire for revenge and buffer the decline into iterative noncooperation. However, those with compassion-based motivation alone may get exploited. Finally, we argue that the affective states underlying fairness-based and compassion-based motivation are fundamentally different, the former driven by anger or fear of being punished and the latter by a wish for the other person's well-being.

The Social Neuroscience of Empathy (n.d., Journal Article)

The phenomenon of empathy entails the ability to share the affective experiences of others. In recent years social neuroscience made considerable progress in revealing the mechanisms that enable a person to feel what another is feeling. The present review provides an in-depth and critical discussion of these findings. Consistent evidence shows that sharing the emotions of others is associated with activation in neural structures that are also active during the first-hand experience of that emotion. Part of the neural activation shared between self- and other-related experiences seems to be rather automatically activated. However, recent studies also show that empathy is a highly flexible phenomenon, and that vicarious responses are malleable with respect to a number of factors—such as contextual appraisal, the interpersonal relationship between empathizer and other, or the perspective adopted during observation of the other. Future investigations are needed to provide more detailed insights into these factors and their neural underpinnings. Questions such as whether individual differences in empathy can be explained by stable personality traits, whether we can train ourselves to be more empathic, and how empathy relates to prosocial behavior are of utmost relevance for both science and society.

Functional neuroimaging investigations in the fields of social neuroscience and neuroeconomics indicate that the anterior insular cortex (AI) is consistently involved in empathy, compassion, and interpersonal phenomena such as fairness and cooperation. These findings suggest that AI plays an important role in social emotions, hereby defined as affective states that arise when we interact with other people and that depend on the social context. After we link the role of AI in social emotions to interoceptive awareness and the representation of current global emotional states, we will present a model suggesting that AI is not only involved in representing current states, but also in predicting emotional states relevant to the self and others. This model also proposes that AI enables us to learn about emotional states as well as about the uncertainty attached to events, and implies that AI plays a dominant role in decision making in complex and uncertain environments. Our review further highlights that dorsal and ventro-central, as well as anterior and posterior subdivisions of AI potentially subserve different functions and guide different aspects of behavioral regulation. We conclude with a section summarizing different routes to understanding other people’s actions, feelings and thoughts, emphasizing the notion that the predominant role of AI involves understanding others’ feeling and bodily states rather than their action intentions or abstract beliefs.

Difficulties in social cognition are well recognized in individuals with autism spectrum conditions (henceforth ‘autism’). Here we focus on one crucial aspect of social cognition: the ability to empathize with the feelings of another. In contrast to theory of mind, a capacity that has often been observed to be impaired in individuals with autism, much less is known about the capacity of individuals with autism for affect sharing. Based on previous data suggesting that empathy deficits in autism are a function of interoceptive deficits related to alexithymia, we aimed to investigate empathic brain responses in autistic and control participants with high and low degrees of alexithymia. Using functional magnetic resonance imaging, we measured empathic brain responses with an ‘empathy for pain’ paradigm assessing empathic brain responses in a real-life social setting that does not rely on attention to, or recognition of, facial affect cues. Confirming previous findings, empathic brain responses to the suffering of others were associated with increased activation in left anterior insula and the strength of this signal was predictive of the degree of alexithymia in both autistic and control groups but did not vary as a function of group. Importantly, there was no difference in the degree of empathy between autistic and control groups after accounting for alexithymia. These findings suggest that empathy deficits observed in autism may be due to the large comorbidity between alexithymic traits and autism, rather than representing a necessary feature of the social impairments in autism.

Summary
Little is known about the neurobiological mechanisms underlying prosocial decisions and how they are modulated by social factors such as perceived group membership. The present study investigates the neural processes preceding the willingness to engage in costly helping toward ingroup and outgroup members. Soccer fans witnessed a fan of their favorite team (ingroup member) or of a rival team (outgroup member) experience pain. They were subsequently able to choose to help the other by enduring physical pain themselves to reduce the other's pain. Helping the ingroup member was best predicted by anterior insula activation when seeing him suffer and by associated self-reports of empathic concern. In contrast, not helping the outgroup member was best predicted by nucleus accumbens activation and the degree of negative evaluation of the other. We conclude that empathy-related insula activation can motivate costly helping, whereas an antagonistic signal in nucleus accumbens reduces the propensity to help.

A growing body of evidence suggests that empathy for pain is underpinned by neural structures that are also involved in the direct experience of pain. In order to assess the consistency of this finding, an image-based meta-analysis of nine independent functional magnetic resonance imaging (fMRI) investigations and a coordinate-based meta-analysis of 32 studies that had investigated empathy for pain using fMRI were conducted. The results indicate that a core network consisting of bilateral anterior insular cortex and medial/anterior cingulate cortex is associated with empathy for pain. Activation in these areas overlaps with activation during directly experienced pain, and we link their involvement to representing global feeling states and the guidance of adaptive behavior for both self- and other-related experiences. Moreover, the image-based analysis demonstrates that depending on the type of experimental paradigm this core network was co-activated with distinct brain regions: While viewing pictures of body parts in painful situations recruited areas underpinning action understanding (inferior parietal/ventral premotor cortices) to a stronger extent, eliciting empathy by means of abstract visual information about the other's affective state more strongly engaged areas associated with inferring and representing mental states of self and other (precuneus, ventral medial prefrontal cortex, superior temporal cortex, and temporo-parietal junction). In addition, only the picture-based paradigms activated somatosensory areas, indicating that previous discrepancies concerning somatosensory activity during empathy for pain might have resulted from differences in experimental paradigms. We conclude that social neuroscience paradigms provide reliable and accurate insights into complex social phenomena such as empathy and that meta-analyses of previous studies are a valuable tool in this endeavor.

Compassion has been suggested to be a strong motivator for prosocial behavior. While research has demonstrated that compassion training has positive effects on mood and health, we do not know whether it also leads to increases in prosocial behavior. We addressed this question in two experiments. In Experiment 1, we introduce a new prosocial game, the Zurich Prosocial Game (ZPG), which allows for repeated, ecologically valid assessment of prosocial behavior and is sensitive to the influence of reciprocity, helping cost, and distress cues on helping behavior. Experiment 2 shows that helping behavior in the ZPG increased in participants who had received short-term compassion training, but not in participants who had received short-term memory training. Interindividual differences in practice duration were specifically related to changes in the amount of helping under no-reciprocity conditions. Our results provide first evidence for the positive impact of short-term compassion training on prosocial behavior towards strangers in a training-unrelated task.

People show autonomic responses when they empathize with the suffering of another person. However, little is known about how these autonomic changes are related to prosocial behavior. We measured skin conductance responses (SCRs) and affect ratings in participants while either receiving painful stimulation themselves, or observing pain being inflicted on another person. In a later session, they could prevent the infliction of pain in the other by choosing to endure pain themselves. Our results show that the strength of empathy-related vicarious skin conductance responses predicts later costly helping. Moreover, the higher the match between SCR magnitudes during the observation of pain in others and SCR magnitude during self pain, the more likely a person is to engage in costly helping. We conclude that prosocial motivation is fostered by the strength of the vicarious autonomic response as well as its match with first-hand autonomic experience.

Summary
Human social exchange is often characterized by conflicts of interest requiring strategic behavior for their resolution. To investigate the development of the cognitive and neural mechanisms underlying strategic behavior, we studied children's decisions while they played two types of economic exchange games with differing demands of strategic behavior. We show an increase of strategic behavior with age, which could not be explained by age-related changes in social preferences but instead by developmental differences in impulsivity and associated brain functions of the left dorsolateral prefrontal cortex (DLPFC). Furthermore, observed differences in cortical thickness of lDLPFC were predictive of differences in impulsivity and strategic behavior irrespective of age. We conclude that egoistic behavior in younger children is not caused by a lack of understanding right or wrong, but by the inability to implement behavioral control when tempted to act selfishly; a function relying on brain regions maturing only late in ontogeny.

Extensive animal and recent human research have helped inform neuroendocrinological models of social cognition, motivation and behavior. In this review, we first summarize important findings regarding oxytocin, arginine vasopressin and testosterone in the domains of affiliation, social cognition, aggression and stress/anxiety. We then suggest ways in which human research can continue to profit from animal research, particularly by exploring the interactive nature of neuromodulatory effects at neurochemical, organismic and contextual levels. We further propose methods inspired by the animal literature for the ecologically valid assessment of affiliative behavior in humans. We conclude with suggestions for how human research could advance by directly assessing specific social cognitive and motivational mechanisms as intermediate variables. We advocate a more comprehensive look at the distinct networks identified by social neuroscience and the importance of a motivational state, in addition to approach and avoidance, associated with quiescence and homeostatic regulation.

Emotions seem to play a critical role in moral judgment. However, the way in which emotions exert their influence on moral judgments is still poorly understood. This study proposes a novel theoretical approach suggesting that emotions influence moral judgments based on their motivational dimension. We tested the effects of two types of induced emotions with equal valence but with different motivational implications (anger and disgust), and four types of moral scenarios (disgust-related, impersonal, personal, and beliefs) on moral judgments. We hypothesized and found that approach motivation associated with anger would make moral judgments more permissible, while disgust, associated with withdrawal motivation, would make them less permissible. Moreover, these effects varied as a function of the type of scenario: the induced emotions only affected moral judgments concerning impersonal and personal scenarios, while we observed no effects for the other scenarios. These findings suggest that emotions can play an important role in moral judgment, but that their specific effects depend upon the type of emotion induced. Furthermore, induced emotion effects were more prevalent for moral decisions in personal and impersonal scenarios, possibly because these require the performance of an action rather than making an abstract judgment. We conclude that the effects of induced emotions on moral judgments can be predicted by taking their motivational dimension into account. This finding has important implications for moral psychology, as it points toward a previously overlooked mechanism linking emotions to moral judgments.

This review provides an overview of the field of social neuroscience from a European perspective and focuses mainly on outlining research topics which originated in European laboratories. After a brief historical synopsis of the emergence of this young field, the most relevant findings related to the investigation of the neural networks underlying our capacity to understand the minds of others are summarized. More specifically, three routes of social cognition are distinguished: (1) our capacity to mentalize, or to infer intentions and beliefs of others, (2) our capacity to mimic and understand other's motor actions, and (3) our capacity to empathize, or to share and understand the feelings of others. More recent studies focusing on social emotions such as love, compassion, revenge or our sense of fairness will be discussed linking the field of social neuroscience to the even younger field of neuroeconomics, with the focus on the study of human social interactions using game theoretical paradigms. Finally, the use of a multi-method and multi-disciplinary research approach combining genetic, pharmacological, computational and developmental aspects is advocated and future directions for the study of interactive minds are discussed.

The development of social emotions such as compassion is crucial for successful social interactions as well as for the maintenance of mental and physical health, especially when confronted with distressing life events. Yet, the neural mechanisms supporting the training of these emotions are poorly understood. To study affective plasticity in healthy adults, we measured functional neural and subjective responses to witnessing the distress of others in a newly developed task (Socio-affective Video Task). Participants’ initial empathic responses to the task were accompanied by negative affect and activations in the anterior insula and anterior medial cingulate cortex—a core neural network underlying empathy for pain. Whereas participants reacted with negative affect before training, compassion training increased positive affective experiences, even in response to witnessing others in distress. On the neural level, we observed that, compared with a memory control group, compassion training elicited activity in a neural network including the medial orbitofrontal cortex, putamen, pallidum, and ventral tegmental area—brain regions previously associated with positive affect and affiliation. Taken together, these findings suggest that the deliberate cultivation of compassion offers a new coping strategy that fosters positive affect even when confronted with the distress of others.

The capacity to self-generate mental content that is unrelated to the current environment is a fundamental characteristic of the mind, and the current experiment explored how this experience is related to the decisions that people make in daily life. We examined how task-unrelated thought (TUT) varies with the length of time participants are willing to wait for an economic reward, as measured using an inter-temporal discounting task. When participants performed a task requiring minimal attention, the greater the amount of time spent engaged in TUT the longer the individual was prepared to wait for an economic reward. These data indicate that self-generated thought engages processes associated with the successful management of long-term goals. Although immersion in the here and now is undeniably advantageous, under appropriate conditions the capacity to let go of the present and consider more pertinent personal goals may have its own rewards.

Empathy circuits (n.d., Journal Article)

The social neuroscientific investigation of empathy has revealed that the same neural networks engaged during first-hand experience of affect subserve empathic responses. Recent meta-analyses focusing on empathy for pain for example reliably identified a network comprising anterior insula and anterior midcingulate cortex. Moreover, recent studies suggest that the generation of empathy is flexibly supported by networks involved in action simulation and mentalizing depending on the information available in the environment. Further, empathic responses are modulated by many factors including the context they occur in. Recent work shows how this modulation can be afforded by the engagement of antagonistic motivational systems or by cognitive control circuits, and these modulatory systems can also be employed in efforts to regulate one's empathic responses.

Social comparison can elicit emotions such as envy, which can affect social interactions. The emergence and development of such social emotions through ontogeny, and their influence on social interaction, are unknown. We tested 182 children from 7 to 13 years of age with a novel monetary reward-and-punishment task measuring envy and Schadenfreude (i.e., gloating or taking delight in someone else’s misfortune). Children were either rewarded or punished in a trial-by-trial evaluation of their performance on a speeded reaction time task. In a social condition, feedback of their own and a competitor’s performance was given for each trial. Afterward, children rated how they felt about the outcome. The ratings suggest that when children won, they felt better if the competitor lost instead of winning (i.e., Schadenfreude). Conversely, when children lost, they felt worse if the competitor won instead of losing (i.e., envy). Crucially, levels of envy and Schadenfreude decreased with age. We also studied how these emotions relate to social decisions made separately during three resource allocation paradigms. In each, children chose between two options that differed in the distribution of valuable tokens between themselves and an anonymous other. The combination of choices allowed the measurement of inequity aversion (i.e., equality for all) and spite (i.e., self-profit to maximal disadvantage of the other). We found an age-related increase in inequity aversion and decrease in spite. Crucially, age-related changes in both envy and Schadenfreude predicted the developmental change in equity-related decisions. These findings shed light on the development of social emotions and demonstrate their importance in the development of prosocial behavior in children.

Humans tend to use the self as a reference point to perceive the world and gain information about other people's mental states. However, applying such a self-referential projection mechanism in situations where it is inappropriate can result in egocentrically biased judgments. To assess egocentricity bias in the emotional domain (EEB), we developed a novel visuo-tactile paradigm assessing the degree to which empathic judgments are biased by one's own emotions if they are incongruent to those of the person we empathize with. A first behavioral experiment confirmed the existence of such EEB, and two independent fMRI experiments revealed that overcoming biased empathic judgments is associated with increased activation in the right supramarginal gyrus (rSMG), in a location distinct from activations in right temporoparietal junction reported in previous social cognition studies. Using temporary disruption of rSMG with repetitive transcranial magnetic stimulation resulted in a substantial increase of EEB, and so did reducing visuo-tactile stimulation time as shown in an additional behavioral experiment. Our findings provide converging evidence from multiple methods and experiments that rSMG is crucial for overcoming emotional egocentricity. Effective connectivity analyses suggest that this may be achieved by early perceptual regulation processes disambiguating proprioceptive first-person information (touch) from exteroceptive third-person information (vision) during incongruency between self- and other-related affective states. Our study extends previous models of social cognition. It shows that although shared neural networks may underlie emotional understanding in some situations, an additional mechanism subserved by rSMG is needed to avoid biased social judgments in other situations.

Recent work has highlighted that the generation of thoughts unrelated to the current environment may be both a cause and a consequence of unhappiness. The current study used lag analysis to examine whether the relationship between self-generated thought and negative affect depends on the content of the thoughts themselves. We found that the emotional content could strongly predict subsequent mood (e.g. negative thoughts were associated with subsequent negative mood). However, this direct relationship was modulated by the socio-temporal content of the thoughts: thoughts that were past- and other-related were associated with subsequent negative mood, even if current thought content was positive. By contrast, future- and self-related thoughts preceded improvements of mood, even when current thought content was negative. These results highlight the important link between self-generated thought and mood and suggest that the socio-temporal content plays an important role in determining whether an individual's future affective state will be happy or sad.

Although empathy is crucial for successful social interactions, excessive sharing of others’ negative emotions may be maladaptive and constitute a source of burnout. To investigate functional neural plasticity underlying the augmentation of empathy and to test the counteracting potential of compassion, one group of participants was first trained in empathic resonance and subsequently in compassion. In response to videos depicting human suffering, empathy training, but not memory training (control group), increased negative affect and brain activations in anterior insula and anterior midcingulate cortex—brain regions previously associated with empathy for pain. In contrast, subsequent compassion training could reverse the increase in negative effect and, in contrast, augment self-reports of positive affect. In addition, compassion training increased activations in a non-overlapping brain network spanning ventral striatum, pregenual anterior cingulate cortex and medial orbitofrontal cortex. We conclude that training compassion may reflect a new coping strategy to overcome empathic distress and strengthen resilience.

High resolution thermal infrared imaging is a pioneering method giving indices of sympathetic activity via the contact-free recording of facial tissues (thermal imprints). Compared to established stress markers, the great advantage of this method is its non-invasiveness. The goal of our study was to pilot the use of thermal infrared imaging in the classical setting of human stress research. Thermal imprints were compared to established stress markers (heart rate, heart rate variability, finger temperature, alpha-amylase and cortisol) in 15 participants undergoing anticipation, stress and recovery phases of two laboratory stress tests, the Cold Pressor Test and the Trier Social Stress Test. The majority of the thermal imprints proved to be change-sensitive in both tests. While correlations between the thermal imprints and established stress markers were mostly non-significant, the thermal imprints (but not the established stress makers) did correlate with stress-induced mood changes. Multivariate pattern analysis revealed that in contrast to the established stress markers the thermal imprints could not disambiguate anticipation, stress and recovery phases of both tests. Overall, these results suggest that thermal infrared imaging is a valuable method for the estimation of sympathetic activity in the stress laboratory setting. The use of this non-invasive method may be particularly beneficial for covert recordings, in the study of special populations showing difficulties in complying with the standard instruments of data collection and in the domain of psychophysiological covariance research. Meanwhile, the established stress markers seem to be superior when it comes to the characterization of complex physiological states during the different phases of the stress cycle.

Summary
Stress disorders are among the most commonly occurring of all mental disorders. In this context, the question arises whether the stress inevitably unfolding around us has the potential to “contaminate” and compromise us. In the current multi-center study, we investigate the existence of such empathic stress (defined as a full-blown physiological stress response that arises solely by observing a target undergo a stressful situation), and whether empathic stress permeates to the core of the stress system, the hypothalamic-pituitary-adrenal (HPA) axis. Additionally, we investigate whether empathic stress responses may be modulated by the familiarity between observer and target (partners vs. strangers), the modality of observation (real-life vs. virtual) and observer sex (female vs. male). Participants were tested in dyads, paired with a loved one or a stranger of the opposite sex. While the target of the dyad (n = 151) was exposed to a psychosocial stressor, the observer (n = 211) watched through a one-way mirror or via live video transmission. Overall, 26% of the observers displayed physiologically significant cortisol increases. This empathic stress was more pronounced in intimate observer-target dyads (40%) and during the real-life representation of the stressor (30%). Empathic stress was further modulated by interindividual differences in empathy measures. Despite the higher prevalence of empathic stress in the partner and real-life observation conditions, significant cortisol responses also emerged in strangers (10%) and the virtual observation modality (24%). The occurrence of empathic stress down to the level of HPA-axis activation, in some cases even in total strangers and when only virtually witnessing another's distress, may have important implications for the development of stress-related diseases.

The present study investigated the premise that individual differences in autonomic physiology could be used to specify the nature and consequences of information processing taking place in medial prefrontal regions during cognitive reappraisal of unpleasant pictures. Neural (blood oxygenation level-dependent functional magnetic resonance imaging) and autonomic (electrodermal [EDA], pupil diameter, cardiac acceleration) signals were recorded simultaneously as twenty-six older people (ages 64-66 years) used reappraisal to increase, maintain, or decrease their responses to unpleasant pictures. EDA was higher when increasing and lower when decreasing compared to maintaining. This suggested modulation of emotional arousal by reappraisal. By contrast, pupil diameter and cardiac acceleration were higher when increasing and decreasing compared to maintaining. This suggested modulation of cognitive demand. Importantly, reappraisal-related activation (increase, decrease>maintain) in two medial prefrontal regions (dorsal medial frontal gyrus and dorsal cingulate gyrus) was correlated with greater cardiac acceleration (increase, decrease>maintain) and monotonic changes in EDA (increase>maintain>decrease). These data indicate that these two medial prefrontal regions are involved in the allocation of cognitive resources to regulate unpleasant emotion, and that they modulate emotional arousal in accordance with the regulatory goal. The emotional arousal effects were mediated by the right amygdala. Reappraisal-related activation in a third medial prefrontal region (subgenual anterior cingulate cortex) was not associated with similar patterns of change in any of the autonomic measures, thus highlighting regional specificity in the degree to which cognitive demand is reflected in medial prefrontal activation during reappraisal.

The information processing capacity of the human mind is limited, as is evidenced by the attentional blink-a deficit in identifying the second of two targets (T1 and T2) presented in close succession. This deficit is thought to result from an overinvestment of limited resources in T1 processing. We previously reported that intensive mental training in a style of meditation aimed at reducing elaborate object processing, reduced brain resource allocation to T1, and improved T2 accuracy [Slagter, H. A., Lutz, A., Greischar, L. L., Francis, A. D., Nieuwenhuis, S., Davis, J., et al. Mental training affects distribution of limited brain resources. PloS Biology, 5, e138, 2007]. Here we report EEG spectral analyses to examine the possibility that this reduction in elaborate T1 processing rendered the system more available to process new target information, as indexed by T2-locked phase variability. Intensive mental training was associated with decreased cross-trial variability in the phase of oscillatory theta activity after successfully detected T2s, in particular, for those individuals who showed the greatest reduction in brain resource allocation to T1. These data implicate theta phase locking in conscious target perception, and suggest that after mental training the cognitive system is more rapidly available to process new target information. Mental training was not associated with changes in the amplitude of T2-induced responses or oscillatory activity before task onset. In combination, these findings illustrate the usefulness of systematic mental training in the study of the human mind by revealing the neural mechanisms that enable the brain to successfully represent target information.

Muscle or electromyogenic (EMG) artifact poses a serious risk to inferential validity for any electroencephalography (EEG) investigation in the frequency-domain owing to its high amplitude, broad spectrum, and sensitivity to psychological processes of interest. Even weak EMG is detectable across the scalp in frequencies as low as the alpha band. Given these hazards, there is substantial interest in developing EMG correction tools. Unfortunately, most published techniques are subjected to only modest validation attempts, rendering their utility questionable. We review recent work by our laboratory quantitatively investigating the validity of two popular EMG correction techniques, one using the general linear model (GLM), the other using temporal independent component analysis (ICA). We show that intra-individual GLM-based methods represent a sensitive and specific tool for correcting on-going or induced, but not evoked (phase-locked) or source-localized, spectral changes. Preliminary work with ICA shows that it may not represent a panacea for EMG contamination, although further scrutiny is strongly warranted. We conclude by describing emerging methodological trends in this area that are likely to have substantial benefits for basic and applied EEG research.

Individuals show marked variation in their responses to threat. Such individual differences in “behavioral inhibition” (BI) play a profound role in mental and physical wellbeing. BI is thought to reflect variation in the sensitivity of a distributed neural system responsible for generating anxiety and organizing defensive responses in response to threat and punishment. Although progress has been made in identifying the key constituents of this behavioral inhibition system (BIS) in humans, the involvement of dorsolateral prefrontal cortex (dlPFC) remains unclear. Here, we acquired self-reported BIS-sensitivity and high-density EEG from a large sample (n=51). Using the enhanced spatial resolution afforded by source modeling techniques, we show that individuals with greater tonic activity in right posterior dlPFC rate themselves as more behaviorally inhibited. This observation provides novel support for recent conceptualizations of BI and clues to the mechanisms that might underlie variation in threat-induced negative affect.

Pages

  • Page
  • of 366